Stark Tower monitoring

Since Tony disconnected the power transmission lines, Pepper has been monitoring Stark Tower in its new, off-the-power-grid state. To do this she studies a volumetric dashboard display that floats above glowing shelves on a desktop.


Volumetric elements

The display features some volumetric elements, all rendered as wireframes in the familiar Pepper’s Ghost (I know, I know) visual style: translucent, edge-lit planes. A large component to her right shows Stark Tower, with red lines highlighting the power traveling from the large arc reactor in the basement through the core of the building.

The center of the screen has a similarly-rendered close up of the arc reactor. A cutaway shows a pulsing ring of red-tinged energy flowing through its main torus.

This component makes a good deal of sense, showing her the physical thing she’s meant to be monitoring but not in a photographic way, but a way that helps her quickly locate any problems in space. The torus cutaway is a little strange, since if she’s meant to be monitoring it, she should monitor the whole thing, not just a quarter of it that has been cut away.

Flat elements

The remaining elements in the display appear on a flat plane. Continue reading

Iron Man HUD: 1st person view

When we first see the HUD, Tony is donning the Iron Man mask. Tony asks, “JARVIS, “You there?”” To which JARVIS replies, ““At your service sir.”” Tony tells him to “Engage the heads-up display,” and we see the HUD initialize. It is a dizzying mixture of blue wireframe motion graphics. Some imply system functions, such as the reticle that pinpoints Tony’s eye. Most are small dashboard-like gauges that remain small and in Tony’s peripheral vision while the information is not needed, and become larger and more central when needed. These features are catalogued in another post, but we learn about them through two points-of-view: a first-person view, which shows us what Tony’s sees as if we were there, donning the mask in his stead, and second-person view, which shows us Tony’s face overlaid against a dark background with floating graphics.

This post is about that first-person view. Specifically it’s about the visual design and the four awarenesses it displays.


In the Augmented Reality chapter of Make It So, I identified four types of awareness seen in the survey for Augmented Reality displays:

  1. Sensor display
  2. Location awareness
  3. Context awareness
  4. Goal awareness

The Iron Man HUD illustrates all four and is a useful framework for describing and critiquing the 1st-person view. Continue reading

Ford Explorer Status


One computer in the control room is dedicated to showing the status of the Jeeps out on tour, and where they currently are on the island.

Next to the vehicle outline, we see the words “Vehicle Type: Ford Explorer” (thank you, product placement) along with “EXP” 4–7.  EXP 4 & 5 look unselected, but have green dots next to them, while EXP 6 & 7 look selected with red dots next to them.  No characters interact with this screen. Mr. Arnold does tap on it with a pen (to make a point though, not to interact with it).

On the right hand side of the screen also see a top-down view of the car with the electric track shown underneath, and little red arrows pointing forward.  Below the graphic are the words “13 mph”.  The most visible and obvious indicator on the screen is the headlights.  A large “Headlights On” indicator is at the top of the screen, with highlighted cones coming out of the Jeep where the headlights are on the car. Continue reading


The first computer interface we see in the film occurs at 3:55. It’s an interface for housing and monitoring the tesseract, a cube that is described in the film as “an energy source” that S.H.I.E.L.D. plans to use to “harness energy from space.” We join the cube after it has unexpectedly and erratically begun to throw off low levels of gamma radiation.

The harnessing interface consists of a housing, a dais at the end of a runway, and a monitoring screen.


Fury walks past the dais they erected just because.

The housing & dais

The harness consists of a large circular housing that holds the cube and exposes one face of it towards a long runway that ends in a dais. Diegetically this is meant to be read more as engineering than interface, but it does raise questions. For instance, if they didn’t already know it was going to teleport someone here, why was there a dais there at all, at that exact distance, with stairs leading up to it? How’s that harnessing energy? Wouldn’t you expect a battery at the far end? If they did expect a person as it seems they did, then the whole destroying swaths of New York City thing might have been avoided if the runway had ended instead in the Hulk-holding cage that we see later in the film. So…you know…a considerable flaw in their unknown-passenger teleportation landing strip design. Anyhoo, the housing is also notable for keeping part of the cube visible to users near it, and holding it at a particular orientation, which plays into the other component of the harness—the monitor.

Avengers-cubemonitoring-03 Continue reading

Escape pod and insertion windows


When the Rodger Young is destroyed by fire from the Plasma Bugs on Planet P, Ibanez and Barcalow luckily find a functional escape pod and jettison. Though this pod’s interface stays off camera for almost the whole scene, the pod is knocked and buffeted by collisions in the debris cloud outside the ship, and in one jolt we see the interface for a fraction of a second. If it looks familiar, it is not from anything in Starship Troopers.

vlcsnap-2014-12-09-21h16m18s69 Continue reading

Rodger Young combat interfaces

The interfaces aboard the Rodger Young in combat are hard to take seriously. The captain’s interface, for instance, features arrays of wireframe spheres that zoom from the bottom of the screen across horizontal lines to become blinking green squares. The shapes bear only the vaguest resemblance to the plasma bolts, but don’t match what we see out the viewscreen or the general behavior of the bolts at all. But the ridiculousness doesn’t end there.

Boomdots_8fps Continue reading



After he is spurned by Carmen and her new beau in the station, Rico realizes that he belongs in the infantry and not the fleet where Carmen will be working. So, to cement this new identity, Rico decides to give in and join his fellow roughnecks in getting matching tattoos.  The tattoos show a skull over a shield and the words “Death from Above”. (Incidentally, Death From Above is the name of the documentary detailing the making of the film, a well as the title of a hilarious progressive metal video by the band Holy Light of Demons. You should totally check it out.)  Continue reading

Gravitic distortion

As Ibanez and Barcalow are juuuuuust about to start a slurpy on-duty make out session, their attention is drawn by the coffee mug whose content is listing in the glass.


Ibanez explains helpfully, “There’s a gravity field out there.” Barcalow orders her to “Run a scan!” She turns to a screen and does something to run the scan, and Barcalow confirms that “Sensors [are] on” As she watches an amber-colored graticule distort as if weighed down by an increasingly heavy ball while a Big Purple Text Label blinks GRAVITIC DISTORTION. Two numbers increment speedily at the bottom-right edge of the screen and modulus at 1000. “There,” she says.


So many plot questions

  • What kind of coffee cups can withstand enough gravity to tip the contents 45 degrees but remain themselves perfectly still and upright?
  • Why did they need the coffee cup? Wouldn’t their inner ear have told them the same thing faster?
  • Why is the screen in the background of the coffee cup still blinking OPTIMAL COURSE?

Of course we have to put these aside in favor of the interaction design questions.

First the “workflow”

Why on earth would they need to turn on sensors? Aren’t the sensors only useful when they’re sensing? If you have a sense that something is wrong, turning on the sensors only confirms what you already know. This is still more of that pesky stoic guru metaphor. This should have been an active academy that warned them—loudly—the moment nearby gravity started looking weird.

The visualization is not bad…

Let’s pause the criticism for one moment to give credit where credit is due. The grid vortex is a fast and reliable way to illustrate the invisible problem that they’re facing and telegraph increasing danger. Warped graticules have been a staple of depicting spacetime curvature since Disney’s 1979 movie The Black Hole.

The gravity well as depicted in The Black Hole (1979).

The gravity well as depicted in The Black Hole (1979).

This is also the same technique that scientists use to depict the same phenomenon, so it’s got some street cred, too.


The same thing can be shown in 3D, but it’s visually noisier. Moreover, the 2D version builds on our sense of basic physics, as we can easily imagine what would happen to anything nearing the depression. So, it’s mostly the right display.

…But then, the interaction

Despite the immediacy of the display, there’s a major problem. Sure, this interface conveys impending doom, but it doesn’t convey any useful information to help them know where the threat is coming from or what to do about it after they know that doom impends. (Plus, they had to turn it on, and all it tells them is, “Yep, looks pretty bad out there.”) To design this right, they need a sense of the 3D vector of the threat as compared to their own vector, and what the best available options are.

Better: Augmented reality to telegraph the invisible threat

Fortunately, we already have the medium and channel for Ibanez and Barcalow to immediately understand the 3D direction of the threat in the real world and most importantly, in relation to the ship’s trajectory and orientation, since that’s the tool they have on hand to avoid the threat. We’ve already seen that volumetric projection is a thing in this world, so the ship should display the VP just outside the ship’s viewports. The animation can illustrate the threat coming from the outside on the outside, and fade once the threat gets to be in a range of visible light. In this way there’s no 2D to 3D interpretation. It’s direct. Where’s the unexpected gravitic distortion? Look out the window. There. There is the the unexpected gravitic distortion. The HUD display would need to be aimed at the navigator’s seat, but for very distant objects, e.g. out of visible light range, the parallax shift wouldn’t be problematic for other locations on the bridge. You’d also have to manage the scenario where the threat comes from a direction not out the window (like, say, through the floor) but you can just shift the VP interior for that.

Including a screen comp by Deviant artist scrollsofaryavart.

Including a screen comp by Deviant artist scrollsofaryavart.

Next, you could use VP inside the ship to show the two paths and point of collision, as well as best predicted paths (there’s that useful active academy metaphor again.) Then we can let Ibanez trust her own instincts as she presses the manual override to steer the ship clear. I don’t have the time to comp an internal VP up right now, so I’ll rely on your imagination to comp this particular part of a much better solution than what we see on screen.

Course optimal, the Stoic Guru, and the Active Academy

After Ibanez explains that the new course she plotted for the Rodger Young (without oversight, explicit approval, or notification to superiors) is “more efficient this way,” Barcalow walks to the navigator’s chair, presses a few buttons, and the computer responds with a blinking-red Big Text Label reading “COURSE OPTIMAL” and a spinning graphic of two intersecting grids.


Yep, that’s enough for a screed, one addressed first to sci-fi writers.

A plea to sci-fi screenwriters: Change your mental model

Think about this for a minute. In the Starship Troopers universe, Barcalow can press a button to ask the computer to run some function to determine if a course is good (I’ll discuss “good” vs. “optimal” below). But if it could do that, why would it wait for the navigator to ask it after each and every possible course? Computers are built for this kind of repetition. It should not wait to be asked. It should just do it. This interaction raises the difference between two mental models of interacting with a computer: the Stoic Guru and the Active Academy.


Stoic Guru vs. Active Academy

This movie was written when computation cycles may have seemed to be a scarce resource. (Around 1997 only IBM could afford a computer and program combination to outthink Kasparov.) Even if computation cycles were scarce, navigating the ship safely would be the second most important non-combat function it could possibly do, losing out only to safekeeping its inhabitants. So I can’t see an excuse for the stoic-guru-on-the-hill model of interaction here. In this model, the guru speaks great truth, but only when asked a direct question. Otherwise it sits silently, awaiting contemplating whatever it is gurus contemplate, stoically. Computers might have started that way in the early part of the last century, but there’s no reason they should work that way today, much less by the time we’re battling space bugs between galaxies.

A better model for thinking about interaction with these kinds of problems an active academy, where a group of learned professors is continually working on difficult questions. For a new problem—like “which of the infinite number of possible courses from point A to point B is optimal?”—they would first discuss it among themselves and provide an educated guess with caveats, and continue to work on the problem afterward, continuously, contacting the querant when they found a better answer or when new information came in that changed the answer. (As a metaphor for agentive technologies, the active academy has some conceptual problems, but it’s good enough for purposes of this article.)


Consider this model as you write scenes. Nowadays computation is rarely a scarce resource in your audience’s lives. Most processors are bored, sitting idly and not living up to their full potential. Pretending computation is scarce breaks believability. If ebay can continuously keep looking on my behalf for a great deal on a Ted Baker shirt, the ship’s computer can keep looking for optimal courses on the mission’s behalf.

In this particular scene, the stoic guru has for some reason neglected up to his point to provide a crucial piece of information, and that is the optimal path. Why was it holding this information back if it knew it? How does it know that now? “Well,” I imagine Barcalow saying as he slaps the side of the monitor, “Why didn’t you tell me that the first time I asked you to navigate?” I suspect that, if it had been written with the active academy in mind, it would not end up in the stupid COURSE OPTIMAL zone.

Optimal vs. more optimal than

Part of the believability problem of this particular case may come from the word “optimal,” since that word implies the best out of all possible choices.

But if it’s a stoic guru, it wouldn’t know from optimal. It would just know what you’d asked it or provided it in the past. It would only know relative optimalness amongst the set of courses it had access to. If this system worked that way, the screen text should read something like “34% more optimal than previous course” or “Most optimal of supplied courses.” Either text could show some fuigetry that conveys a comparison of compared parameters below the Big Text Label. But of course the text conveys how embarrassingly limited this would be for a computer. It shouldn’t wait for supplied courses.

If it’s an active academy model, this scene would work differently. It would have either shown him optimal long ago, or show him that it’s still working on the problem and that Ibanez’ is the “Most optimal found.” Neither is entirely satisfying for purposes of the story.


How could this scene gone?

We need a quick beat here to show that in fact, Ibanez is not just some cocky upstart. She really knows what’s up. An appeal to authority is a quick way to do it, but then you have to provide some reason the authority—in this case the computer—hasn’t provided that answer already.

A bigger problem than Starship Troopers

This is a perennial problem for sci-fi, and one that’s becoming more pressing as technology gets more and more powerful. Heroes need to be heroic. But how can they be heroic if computers can and do heroic things for them? What’s the hero doing? Being a heroic babysitter to a vastly powerful force? This will ultimately culminate once we get to the questions raised in Her about actual artificial intelligence.

Fortunately the navigator is not a full-blown artificial intelligence. It’s something less than A.I., and that’s an agentive interface, which gives us our answer. Agentive algorithms can only process what they know, and Ibanez could have been working with an algorithm that the computer didn’t know about. She’s just wrapped up school, so maybe it’s something she developed or co-developed there:

  • Barcalow turns to the nav computer and sees a label: “Custom Course: 34% more efficient than models.”
  • Um…OK…How did you find a better course than the computer could?
  • My grad project nailed the formula for gravity assist through trinary star systems. It hasn’t been published yet.

BAM. She sounds like a badass and the computer doesn’t sound like a character in a cheap sitcom.

So, writers, hopefully that model will help you not make the mistake of penning your computers to be stoic gurus. Next up, we’ll discuss this same short scene with more of a focus on interaction designers.

Little boxes on the interface


After recklessly undocking we see Ibanez using an interface of…an indeterminate nature.

Through the front viewport Ibanez can see the cables and some small portion of the docking station. That’s not enough for her backup maneuver. To help her with that, she uses the display in front of her…or at least I think she does.


The display is a yellow wireframe box that moves “backwards” as the vessel moves backwards. It’s almost as if the screen displayed a giant wireframe airduct through which they moved. That might be useful for understanding the vessel’s movement when visual data is scarce, such as navigating in empty space with nothing but distant stars for reckoning. But here she has more than enough visual cues to understand the motion of the ship: If the massive space dock was not enough, there’s that giant moon thing just beyond. So I think understanding the vessel’s basic motion in space isn’t priority while undocking. More important is to help her understand the position of collision threats, and I cannot explain how this interface does that in any but the feeblest of ways.

If you watch the motion of the screen, it stays perfectly still even as you can see the vessel moving and turning. (In that animated gif I steadied the camera motion.) So What’s it describing? The ideal maneuver? Why doesn’t it show her a visual signal of how well she’s doing against that goal? (Video games have nailed this. The "driving line" in Gran Turismo 6 comes to mind.)

Gran Turismo driving line

If it’s not helping her avoid collisions, the high-contrast motion of the "airduct" is a great deal of visual distraction for very little payoff. That wouldn’t be interaction so much as a neurological distraction from the task at hand. So I even have to dispense with my usual New Criticism stance of accepting it as if it was perfect. Because if this was the intention of the interface, it would be encouraging disaster.


The ship does have some environmental sensors, since when it is 5 meters from the “object,” i.e. the dock, a voiceover states this fact to everyone in the bridge. Note that it’s not panicked, even though that’s relatively like being a peach-skin away from a hull breach of bajillions of credits of damage. No, the voice just says it, like it was remarking about a penny it happened to see on the sidewalk. “Three meters from object,” is said with the same dispassion moments later, even though that’s a loss of 40% of the prior distance. “Clear” is spoken with the same dispassion, even though it should be saying, “Court Martial in process…” Even the tiny little rill of an “alarm” that plays under the scene sounds more like your sister hasn’t responded to her Radio Shack alarm clock in the next room rather than—as it should be—a throbbing alert.


Since the interface does not help her, actively distracts her, and underplays the severity of the danger, is there any apology for this?

1. Better: A viewscreen

Starship Troopers happened before the popularization of augmented reality, so we can forgive the film for not adopting that SAUNa technology, even though it might have been useful. AR might have been a lot for the film to explain to a 1997 audience. But the movie was made long after the popularization of the viewscreen forward display in Star Trek. Of course it’s embracing a unique aesthetic, but focusing on utility: Replace the glass in front of her with a similar viewscreen, and you can even virtually shift her view to the back of the Rodger Young. If she is distracted by the “feeling” of the thrusters, perhaps a second screen behind her will let her swivel around to pilot “backwards.” With this viewscreen she’s got some (virtual) visual information about collision threats coming her way. Plus, you could augment that view with precise proximity warnings, and yes, if you want, air duct animations showing the ideal path (similar to what they did in Alien).

2. VP

The viewscreen solution still puts some burden on her as a pilot to translate 2D information on the viewscreen to 3D reality. Sure, that’s often the job of a pilot, but can we make that part of the job easier? Note that Starship Troopers was also created after the popularization of volumetric projections in Star Wars, so that might have been a candidate, too, with some third person display nearby that showed her the 3D information in an augmented way that is fast and easy for her to interpret.

3. Autopilot or docking tug-drones

Yes, this scene is about her character, but if you were designing for the real world, this is a maneuver that an agentive interface can handle. Let the autopilot handle it, or adorable little "tug-boat" drones.