Green Laser Scan

In a very brief scene, Theo walks through a security arch on his way into the Ministry of Energy. After waiting in queue, he walks towards a rectangular archway. At his approach, two horizontal green laser lines scan him from head to toe. Theo passes through the arch with no trouble.


Though the archway is quite similar to metal detection technology used in airports today, the addition of the lasers hints at additional data being gathered, such as surface mapping for a face-matching algorithm.

We know that security mostly cares about what’s hidden under clothes or within bodies and bags, rather than confirming the surface that security guards can see, so it’s not likely to be an actual technological requirement of the scan. Rather it is a visual reminder to participants and onlookers that the scan is in progress, and moreover that this the Ministry is a secured space.

Though we could argue that the signal could be made more visible, laser light is very eye catching and human eyes are most sensitive at 555nm, and this bright green is the closest to the 808 diode laser at 532nm. So for being an economic, but eye catching signal, this green laser is a perfect choice.


BttF_013When driving in the sky along with other flying cars that fill the skies in 2015, Doc follows a proscribed path in the sky called a “skyway.” Lanes are distinguished by floating lightposts, which the pilot keeps to his left. It all seems a little chaosy, but so does driving in Mumbai to the outsider, and it works if you know how. The other brilliance of the skyway is that suddenly flying cars make some sense systemically. Before this, I certainly thought of flying cars as personal helicopters, taking you from point to point. But of course that becomes an air traffic control nightmare. Much better to adapt a known system that puts the onus of control to the operators.

Less successful are the road signs. Continue reading

Escape pod and insertion windows


When the Rodger Young is destroyed by fire from the Plasma Bugs on Planet P, Ibanez and Barcalow luckily find a functional escape pod and jettison. Though this pod’s interface stays off camera for almost the whole scene, the pod is knocked and buffeted by collisions in the debris cloud outside the ship, and in one jolt we see the interface for a fraction of a second. If it looks familiar, it is not from anything in Starship Troopers.

vlcsnap-2014-12-09-21h16m18s69 Continue reading


Regular readers will have noticed that Starship Troopers is on a bit of pause of late, and the reason is that I am managing a bizarrely busy stint of presentations related to the scifiinterfaces project. Also it’s Halloweek and I want to do more spooky stuff. Last week I wondered e-loud if Gozer from Ghostbusters was a pink Sith, but this post is actually talking about a bit of the interfaces from the movie.

When the Ghostbusters are called to the Sedgewick Hotel, they track a ghost called Slimer from his usual haunt on the 12th floor to a ballroom. There Ray dons a pair of asymmetrical goggles that show him information about the “psycho-kinetic energy (PKE) valences” in the area. (The Ghostbusters wiki—and of course there is such a thing—identifies these alternately as paragoggles or ectogoggles.) He uses the goggles to peek from behind a curtain to look for Slimer.


Far be it for this humble blog to try and reverse-engineer what PKE valences actually are, but let’s presume it generally means ghosts and ghost related activity. Here’s an animated gif of the display for your ghostspotting pleasure.


As he scans the room, we see a shot from his perspective. Five outputs augment the ordinary view the googles offer.

Continue reading

Rodger Young combat interfaces

The interfaces aboard the Rodger Young in combat are hard to take seriously. The captain’s interface, for instance, features arrays of wireframe spheres that zoom from the bottom of the screen across horizontal lines to become blinking green squares. The shapes bear only the vaguest resemblance to the plasma bolts, but don’t match what we see out the viewscreen or the general behavior of the bolts at all. But the ridiculousness doesn’t end there.

Boomdots_8fps Continue reading



After he is spurned by Carmen and her new beau in the station, Rico realizes that he belongs in the infantry and not the fleet where Carmen will be working. So, to cement this new identity, Rico decides to give in and join his fellow roughnecks in getting matching tattoos.  The tattoos show a skull over a shield and the words “Death from Above”. (Incidentally, Death From Above is the name of the documentary detailing the making of the film, a well as the title of a hilarious progressive metal video by the band Holy Light of Demons. You should totally check it out.)  Continue reading

The bug VP


In biology class, the (unnamed) professor points her walking stick (she’s blind) at a volumetric projector. The tip flashes for a second, and a volumetric display comes to life. It illustrates for the class what one of the bugs looks like. The projection device is a cylinder with a large lens atop a rolling base. A large black plug connects it to the wall.

The display of the arachnid appears floating in midair, a highly saturated screen-green wireframe that spins. It has very slight projection rays at the cylinder and a "waver" of a scan line that slowly rises up the display. When it initially illuminates, the channels are offset and only unify after a second.



The top and bottom of the projection are ringed with tick lines, and several tick lines runs vertically along the height of the bug for scale. A large, lavender label at the bottom identifies this as an ARACHNID WARRIOR CLASS. There is another lavendar key too small for us to read.The arachnid in the display is still, though the display slowly rotates around its y-axis clockwise from above. The instructor uses this as a backdrop for discussing arachnid evolution and "virtues."

After the display continues for 14 seconds, it shuts down automatically.



It’s nice that it can be activated with her walking stick, an item we can presume isn’t common, since she’s the only apparently blind character in the movie. It’s essentially gestural, though what a blind user needs with a flash for feedback is questionable. Maybe that signal is somehow for the students? What happens for sighted teachers? Do they need a walking stick? Or would a hand do? What’s the point of the flash then?

That it ends automatically seems pointlessly limited. Why wouldn’t it continue to spin until it’s dismissed? Maybe the way she activated it indicated it should only play for a short while, but it didn’t seem like that precise a gesture.

Of course it’s only one example of interaction, but there are so many other questions to answer. Are there different models that can be displayed? How would she select a different one? How would she zoom in and out? Can it display aimations? How would she control playback? There are quite a lot of unaddressed details for an imaginative designer to ponder.


The display itself is more questionable.

Scale is tough to tell on it. How big is that thing? Students would have seen video of it for years, so maybe it’s not such an issue. But a human for scale in the display would have been more immediately recognizable. Or better yet, no scale: Show the thing at 1:1 in the space so its scale is immediately apparent to all the students. And more appropriately, terrifying.

And why the green wireframe? The bugs don’t look like that. If it was showing some important detail, like carapice density, maybe, but this looks pretty even. How about some realistic color instead? Do they think it would scare kids? (More than the “gee-whiz!” girl already is?)

And lastly there’s the title. Yes, having it rotate accomodates viewers in 360 degrees, but it only reads right for half the time. Copy it, flip it 180º on the y-axis, and stack it, and you’ve got the most important textual information readable at most any time from the display.

Better of course is more personal interaction, individual displays or augmented reality where a student can turn it to examine the arachnid themselves, control the zoom, or follow up on more information. (Wnat to know more?) But the school budget in the world of Starship Troopers was undoubtedly stripped to increase military budget (what a crappy world that would be amirite?), and this single mass display might be more cost effective.

Section No6’s crappy sniper tech



Section 6 sends helicopters to assassinate Kunasagi and her team before they can learn the truth about Project 2501. We get a brief glimpse of the snipers, who wear full-immersion helmets with a large lens to the front of one side, connected by thick cables to ports in the roof of the helicopter. The snipers have their hands on long barrel rifles mounted to posts. In these helmets they have full audio access to a command and control center that gives orders and recieves confirmations.


The helmets feature fully immersive displays that can show abstract data, such as the profiles and portraits of their targets.



These helmets also provide the snipers an augmented reality display that grants high powered magnification views overlaid with complex reticles for targeting. The reticles feature a spiraling indicator of "gyroscopic stabilization" and a red dot that appears in the crosshairs when the target has been held for a full second. The reticles do not provide any "layman" information in text, but rely solely on simple shapes that a well-trained sniper can see rather than read. The whole system has the ability to suppress the cardiovascular interference of the snipers, though no details are given as to how.

These features seem provocative, and a pretty sweet setup for a sniper: heightened vision, supression of interference, aiming guides, and signals indicating a key status. But then, we see a camera on the bottom of the helicopter, mounted with actuators that allow it to move with a high (though not full) freedom of movement and precision. What’s this there for? It wouldn’t make sense for the snipers to be using it to aim. Their eyes are in the direction of their weapons.


This could be used for general surveillance of course, but the collection of technologies that we see here raise the question: If Section 9 has the technology to precisely-control a camera, why doesn’t it apply that to the barrel of the weapon? And if it has the technology to know when the weapon is aimed at its target (showing a red dot) why does it let humans do the targeting?

Of course you want a human to make the choice to pull a trigger/activate a weapon, because we should not leave such a terrible, ethical, and deadly decision to an algorithm, but the other activities of targeting could clearly be handled, and handled better, by technology.

This again illustrates a problem that sci-fi has had with tech, one we saw in Section 6’s security details: How are heroes heroic if the machines can do the hard work? This interface retreats to simple augmentation rather than an agentive solution to bypass the conflict. Real-world designers will have to answer it more directly.

Brain VP


When trying to understand the Puppet Master, Kusanagi’s team consults with their staff Cyberneticist, who displays for them in his office a volumetric projection of the cyborg’s brain. The brain floats free of any surrounding tissue, underlit in a screen-green translucent monochrome. The edge of the projection is a sphere that extends a few centimeters out from the edge of the brain. A pattern of concentric lines routinely passes along the surface of this sphere. Otherwise, the "content" of the VP, that is, the brain itself, does not appear to move or change.

The Cyberneticist explains, while the team looks at the VP, "It isn’t unlike the virtual ghost-line you get when a real ghost is dubbed off. But it shows none of the data degradation dubbing would produce. Well, until we map the barrier perimeter and dive in there, we won’t know anyting for sure."




The VP does not appear to be interactive, it’s just an output. In fact, it’s just an output of the surface features of a brain. There’s no other information called out, no measurements, or augmenting data. Just a brain. Which raises the question of what purpose does this projection serve? Narratively, of course, it tells us that the Cyberneticist is getting deep into neurobiology of the cyborg. But he doesn’t need that information. Kunasagi’s team doesn’t even need that information. Is this some sort of screen saver?

And what’s up with the little ripples? It’s possible that these little waves are more than just an artifact of the speculative technology’s refresh. Perhaps they’re helping to convey that a process is currently underway, perhaps "mapping the barrier perimeter." But if that was the case, the Cyberneticist would want to see some sense of progress against a goal. At the very least there should be some basic sense of progress: How much time is estimated before the mapping is complete, and how much time has elapsed?

Of course any trained brain specialist would gain more information from looking at the surface features of a brain than us laypersons could understand. But if he’s really using this to do such an examination, the translucency and peaked, saturated color makes that task prohibitively harder than just looking at the real thing an office away or a photograph, not to mention the routine rippling occlusion of the material being studied.

Unless there’s something I’m not seeing, this VP seems as useless as an electric paperweight.

R-3000 “Spider tank” vision


Section 6 stations a spider tank, hidden under thermoptic camouflage, to guard Project 2501. When Kunasagi confronts the tank, we see a glimpse of the video feed from its creepy, metal, recessed eye. This view is a screen green image, overlaid with two reticles. The larger one with radial ticks shows where the weapon is pointing while the smaller one tracks the target.

I have often used the discrepancy between a weapon- and target-reticle to point out how far behind Hollywood is on the notion of agentive systems in the real world, but for the spider tank it’s very appropriate.The image processing is likely to be much faster than the actuators controlling the tank’s position and orientation. The two reticles illustrate what the tank’s AI is working on. This said, I cannot work out why there is only one weapon reticle when the tank has two barrels that move independently.



When the spider tank expends all of its ammunition, Kunasagi activates her thermoptic camouflage, and the tank begins to search for her. It switches from its protected white camera to a big-lens blue camera. On its processing screen, the targeting reticle disappears, and a smaller reticle appears with concentric, blinking white arcs. As Kunasagi strains to wrench open plating on the tank, her camouflage is compromised, allowing the tank to focus on her (though curiously, not to do anything like try and shake her off or slam her into the wall or something). As its confidence grows, more arcs appear, become thicker, and circle the center, indicating its confidence.

The amount of information on the augmentation layer is arbitrary, since it’s a machine using it and there are certainly other processes going on than what is visualized. If this was for a human user, there might be more or less augmentation necessary, depending on the amount of training they have and the goal awareness of the system. Certainly an actual crosshairs in the weapon reticle would help aim it very precisely.