Ford Explorer Status

image00

One computer in the control room is dedicated to showing the status of the Jeeps out on tour, and where they currently are on the island.

Next to the vehicle outline, we see the words “Vehicle Type: Ford Explorer” (thank you, product placement) along with “EXP” 4–7.  EXP 4 & 5 look unselected, but have green dots next to them, while EXP 6 & 7 look selected with red dots next to them.  No characters interact with this screen. Mr. Arnold does tap on it with a pen (to make a point though, not to interact with it).

On the right hand side of the screen also see a top-down view of the car with the electric track shown underneath, and little red arrows pointing forward.  Below the graphic are the words “13 mph”.  The most visible and obvious indicator on the screen is the headlights.  A large “Headlights On” indicator is at the top of the screen, with highlighted cones coming out of the Jeep where the headlights are on the car. Continue reading

Weather Monitor

Jurassic Park’s weather prediction software sits on a dedicated computer. It pulls updates from some large government weather forecast (likely NOAA).  The screen is split into three sections (clockwise from top left):

  1. 3D representation of the island and surrounding ocean with cloud layers shown
  2. plan view of the island showing cloud cover
  3. A standard climate metrics along the bottom with data like wind direction (labeled Horizontal Direction), barometric pressure, etc.

We also see a section labeled “Sectors”, with “Island 1” currently selected (other options include “USA” and “Island 2”…which is suitably mysterious).

JurassicPark_weather01

Using the software, they are able to pan the views to the area of ocean with an incoming tropical storm.  The map does not show rainfall, wind direction, wind speed, or distance; but the control room seems to have another source of information for that.  They discuss the projected path of the storm while looking at the map.

JurassicPark_weather03

Missing Information

The park staff relies on the data from weather services of America and Costa Rica, but doesn’t trust their conclusions (Muldoon asks if this storm will swing out of the way at the last second despite projections, “like the last one”).  But the team at Jurassic Park doesn’t have any information on what’s actually happening with the storm.

Unlike local weather stations here in the U.S., or sites like NOAA weather maps, there is in this interface a lack of basic forecasting information like, say, precipitation amount, precipitation type, individual wind speeds inside the storm, direction, etc… Given the deadly, deadly risks inherent in the park, this seems like a significant oversight.

The software has spent a great deal of time rendering a realistic-ish cloud (which, we should note looks foreshadowingly like a human skull), but neglects to give information that is taken for granted by common weather information systems.

Prediction

When the park meteorologist isn’t on duty, or isn’t awake, or has his attention on the Utahraptor trying to smash its way into the control room, the software should provide some basic information to everyone on staff:

  • What does the weather forecast look like over the next few hours and days?

When the weather is likely to be severe, there’s more information, and it needs to urgently get the attention of the park staff.

  • What’s the prediction?
  • Which parts of the park will be hit hardest?
  • Which tours and staff are in the most dangerous areas?
  • How long will the storm be over the island?

If this information tied into mobile apps or Jurassic Park’s wider systems, it could provide alerts to individual staff, tourists, and tours about where they could take shelter.

JurassicPark_weather02

Make the Information Usable

Reorienting information that is stuck on the bottom bar and shifting it into the 3d visual would lower the cognitive load required to understand everything that’s going on.  Adding in visuals for other weather data (taken for granted in weather systems now) would bring it at least up to standard.

Finally, putting it up on the big monitor either on demand or when it is urgent would make it available to everyone in the control room, instead of just whoever happened to be at the weather monitor. Modern systems would push the information information out to staff and visitors on their mobile devices as well.

With those changes, everyone could see weather in real time to adjust their behavior appropriately (like, say, delaying the tour when there’s a tropical storm an hour south), the programmer could check the systems and paddocks that are going to get hit, and the inactive consoles could do whatever they needed to do.

Homing Beacon

image04

After following a beacon signal, Jack makes his way through an abandoned building, tracking the source. At one point he stops by a box on the wall, as he sees a couple of cables coming out from the inside of it, and cautiously opens it.

The repeater

I can’t talk much about interactions on this one given that he does not do much with it. But I guess readers might be interested to know about the actual prop used in the movie, so after zooming in on a screen capture and a bit of help from Google I found the actual radio.

image05

When Jack opens the box he finds the repeater device inside. He realizes that it’s connected to the building structure, using it as an antenna, and over their audio connection asks Vika to decrypt the signal.

The desktop interface

Although this sequence centers around the transmission from the repeater, most of the interactions take place on Vika’s desktop interface. A modal window on the display shows her two slightly different waveforms that overlap one another. But it’s not clear at all why the display shows two signals instead of just one, let aside what the second signal means.

After Jack identifies it as a repeater and asks her to decrypt the signal, Vika touches a DECODE button on her screen. With a flourish of orange and white, the display changes to reveal a new panel of information, providing a LATITUDE INPUT and LONGITUDE INPUT, which eventually resolve to 41.146576 -73.975739. (Which, for the curious, resolves to Stelfer Trading Company in Fairfield, Connecticut here on Earth. Hi, M. Stelfer!) Vika says, “It’s a set of coordinates. Grid 17. It’s a goddamn homing beacon.”

DECODE_15FPS

At the control tower Vika was already tracking the signal through her desktop interface. As she hears Jack’s request, she presses the decrypt button at the top of the signal window to start the process.

Continue reading

Bike interfaces

There is one display on the bike to discuss, some audio features, and a whole lot of things missing.

image00

The bike display is a small screen near the front of the handlebars that displays a limited set of information to Jack as he’s riding.  It is seen used as a radar system.  The display is circular, with main content in the middle, a turquoise sweep, and a turquoise ring just inside the bezel. We never see Jack touch the screen, but we do see him work a small, unlabeled knob at the bottom left of the bike’s plates.  It is not obvious what this knob does, but Jack does fiddle with it. Continue reading

Communications with Sally

image01

While Vika and Jack are conducting their missions on the ground, Sally is their main point of contact in orbital TET command. Vika and Sally communicate through a video feed located in the top left corner of the TETVision screen. There is no camera visible in the film, but it is made obvious that Sally can see Vika and at one point Jack as well.

image00

The controls for the communications feed are located in the bottom left corner of the TETVision screen. There are only two controls, one for command and one for Jack. The interaction is pretty standard—tap to enable, tap again to disable. It can be assumed that conferencing is possible, although certain scenes in the film indicate that this has never taken place. Continue reading

Hydro-rig Monitoring

image00

As a part of their morning routine, Jack makes the rounds in his Bubbleship to provide a visual confirmation that the hydro-rigs are operating properly. In order to send the hydro-rig coordinates to the Bubbleship, Vika:

  1. Holds with two fingers on the hydro-rig symbol on the left-hand side panel of the TETVision feed
  2. A summary of coordinates is displayed around the touchpoint (hydro-rig symbol)
  3. Drags the data up to the Bubbleship symbol on the side panel

Inconsistent interactions

When Vika sends the drone coordinates, she interacts directly with the map and uses only one finger. Why is the interaction for sending hydro-rig coordinates different than the interaction for sending drone coordinates? Continue reading

The Bubbleship Cockpit

image01 Jack’s main vehicle in the post-war Earth is the Bubbleship craft. It is a two seat combination of helicopter and light jet. The center joystick controls most flight controls, while a left-hand throttle takes the place of a helicopter’s thrust selector. A series of switches above Jack’s seat provide basic power and start-up commands to the Bubbleship’s systems. image05 Jack first provides voice authentication to the Bubbleship (the same code used to confirm his identity to the Drones), then he moves to activate the switches above his head. Continue reading

COURSE OPTION ANALYSIS

vlcsnap-2014-12-11-00h47m31s85

When Ibanez and Barcalow enter the atmosphere in the escape pod, we see a brief, shaky glimpse of the COURSE OPTION ANALYSIS interface. In the screen grab below, you can see it has a large, yellow, all-caps label at the top. The middle shows the TERRAIN PROFILE. This consists of a real-time, topography map as a grid of screen-green dots that produce a shaded relief map.

STARSHIP_TROOPERS_landing_trim

On the right is a column of text that includes:

  • The title, i.e., TERRAIN PROFILE
  • The location data: Planet P, Scylla Charybdis (which I don’t think is mentioned in the film, but a fun detail. Is this the star system?)
  • Coordinates in 3D: XCOORD, YCOORD, and ELEVATION. (Sadly these don’t appear to change, despite the implied precision of 5 decimal places)
  • Three unknown variables: NOMINAL, R DIST, HAZARD Q (these also don’t change)

The lowest part of the block reads that the SITE ASSESSMENT (at 74.28%, which—does it need to be said at this point—also does not change.)

Two inscrutable green blobs extend out past the left and bottom white line that borders this box. (Seriously what the glob are these meant to be?)

At the bottom is SCAN M and PLACE wrapped in the same purple “NV” wrappers seen throughout the Federation spaceship interfaces. At the bottom is an array of inscrutable numbers in white.

Since that animated gif is a little crazy to stare at, have this serene, still screen cap to reference for the remainder of the article.

vlcsnap-2014-12-11-00h47m37s145

 

Design

Three things to note in the analysis.

1. Yes, fuigetry

I’ll declare everything on the bottom to be filler unless someone out there can pull some apologetics to make sense of it. But even if an array of numbers was ever meant to be helpful, an emergency landing sequence does not appear to be the time. If it needs to be said, emergency interfaces should include only the information needed to manage the crisis.

2. The visual style of the topography

I have before blasted the floating pollen displays of Prometheus for not describing the topography well, but the escape pod display works while using similar pointillist tactics. Why does this work when the floating pollen does not? First, note that the points here are in a grid. This makes the relationship of adjacent points easy to understand. The randomness of the Promethean displays confounds this. Second, note the angle of the “light” in the scene, which appears to come from the horizon directly ahead of the ship. This creates a strong shaded relief effect, a tried and true method of conveying the shape of a terrain.

3. How does this interface even help?

Let’s get this out of the way: What’s Ibanez’ goal here? To land the pod safely. Agreed? Agreed.

Certainly the terrain view is helpful to understand the terrain in the flight path, especially in low visibility. But similar to the prior interface in this pod, there is no signal to indicate how the ship’s position and path relate to it. Are these hills kilometers below (not a problem) or meters (take some real care there, Ibanez.) This interface should have some indication of the pod. (Show me me.)

Additionally, if any of the peaks pose threats, she can avoid them tactically, but adjusting long before they’re a problem will probably help more than veering once she’s right upon them. Best is to show the optimal path, and highlight any threats that would explain the path. Doing so in color (presuming pilots who can see it) would make the information instantly recognizable.

Finally the big label quantifies a “site assessment,” which seems to relay some important information about the landing location. Presumably pilots know what this number represents (process indicator? structural integrity? deviation from an ideal landing strip? danger from bugs?) but putting it here does not help her. So what? If this is a warning, why doesn’t it look like one? Or is there another landing site that she can get to with a better assessment? Why isn’t it helping her find that by default? If this is the best site, why bother her with the number at all? Or the label at all? She can’t do anything with this information, and it takes up a majority of the screen. Better is just to get that noise off the screen along with all the fuigetry. Replace it with a marker for where the ideal landing site is, its distance, and update it live if her path makes that original site no longer viable.

landing_comp

Of course it must be said that this would work better as a HUD which would avoid splitting her attention from the viewport, but HUDs or augmented reality aren’t really a thing in the diegesis.

Narratively

The next scene shows them crashing through the side of a mountain, so despite this more helpful design, better for the scene might be to design a warning mode that reads SAFE SITE: NOT FOUND. SEARCHING… and let that blink manically while real-time, failing site assessments blink all over the terrain map. Then the next scene makes much more sense as they skip off a hill and into a mountain.