Luke’s predictive HUD

When Luke is driving Kee and Theo to a boat on the coast, the car’s heads-up-display shows him the car’s speed with a translucent red number and speed gauge. There are also two broken, blurry gauges showing unknown information.

Suddenly the road becomes blocked by a flaming car rolled onto the road by a then unknown gang. In response, an IMPACT warning triangle zooms in several times to warn the driver of the danger, accompanied by a persistent dinging sound.

childrenofmen-impact-08

It commands attention effectively

Props to this attention-commanding signal. Neuroscience tells us that symmetrical expansion like this triggers something called a startle response.  (I first learned this in the awesome and highly recommended book Mind Hacks.) Any time we see symmetrical expansion in our field of vision, within milliseconds our sympathetic nervous system takes over, fixes our attention to that spot, and prompts us to avoid the thing that our brains believe is coming right at us. It all happens way before conscious processing, and that’s a good thing. It’s evolutionarily designed to keep us safe from falling rocks, flying fists, and pouncing tigers, and scenarios like that don’t have time for the relatively slow conscious processes.

Well visualized

The startle response varies in strength depending on several things.

  • The anxiety of the person (an anxious person will react to a slighter signal)
  • The driver’s habituation to the signal
  • The strength of the signal, in this case…
    • Contrast of the shape against its background
    • The speed of the expansion
  • The presence of a prepulse stimulus

We want the signal to be strong enough to grab the attention of a possibly-distracted driver, but not strong enough to cause them to overreact and risk control of car. While anything this critical to safety needs to be thoroughly tested, the size of the IMPACT triangle seems to sit in the golden mean between these two.

And while the effect is strongest in the lab with a dark shape expanding over a light background, I suspect given habituation to the moving background of the roadscape and a comparatively static HUD, the sympathetic nervous system would have no problem processing this light-on-dark shape.

Well placed

We only see it in action once, so we don’t know if the placement is dynamic. But it appears to be positioned on the HUD such that it draws Luke’s attention directly to the point in his field of vision where the flaming car is. (It looks offset to us because the camera is positioned in the middle of the back seat rather than the driver’s seat.) This dynamic positioning is great since it saves the driver critical bits of time. If the signal was fixed, then the driver would have his attention pulled between the IMPACT triangle and the actual thing. Much better to have the display say, “LOOK HERE!”

Readers of the book will recall this nuance from the lesson from Chapter 8, Augment the Periphery of Vision: “Objects should be placed at the edge of the user’s view when they are not needed, and adjacent to the locus of attention when they are.”

Improvements

There are a few improvements that could be made.

  • It could synchronize the audio to the visual. The dinging is dissociated from the motion of the triangle, and even sounds a bit like a seat belt warning rather than something trying to warn you of a possible, life-threatening collision. Having the sound and visual in sync would strengthen the signal. It could even increase volume with the probability and severity of impact.
  • It could increase the strength of the audio signal by suppressing competing audio, by pausing any audio entertainment and even canceling ambient sounds.
  • It could predict farther into the future. The triangle only appears once the flaming car actually stops in the road a few meters ahead. But there is clearly a burning car rolling down to the road for seconds before that. We see it. The passengers see it. Better sensors and prediction models would have drawn Luke’s attention to the problem earlier and helped him react sooner.
  • It could also know when the driver is actually focused on the problem and than fade the signal to the periphery so that it does not cover up any vital visual information. It can then fade completely when the risk has passed.
  • An even smarter system might be able to adjust the strength of the signal based on real-time variables, like the anxiety of the driver, his or her current level of distraction, ambient noise and light, and of course the degree of risk (a tumbleweed vs. a small child on the road).
  • It could of course go full agentive and apply the brakes or swerve if the driver fails to take appropriate action in time.

Despite these improvements, I believe Luke’s HUD to be well designed that gets underplayed in the drama and disorientation of the scene.

childrenofmen-impact-09

Iron Man HUD: 2nd-person view

The HUD itself displays a number of core capabilities across the Iron Man movies prior to its appearance in The Avengers. Cataloguing these capabilities lets us understand (or backworld) how he interacts with the HUD, equipping us to look for its common patterns and possible conflicts. In the first-person view, we saw it looked almost entirely like a rich agentive display, but with little interaction. Now, let’s look at that gorgeous 2nd-person view.

When in the first film Tony first puts the faceplate on and says to JARVIS, “Engage heads-up display”… IronMan1_HUD00 …we see things from a narrative-conceit, 2nd-person perspective, as if the helmet were huge and we are inside the cavernous space with him, seeing only Tony’s face and the augmented reality interface elements. IronMan1_HUD07 You might be thinking, “Of course it’s a narrative conceit. It’s not real. It’s in a movie.” But what I mean by that is that even in the diegesis, the Marvel Cinematic World, this is not something that could be seen. Let’s move through the reasons why. Continue reading

The Bubbleship Cockpit

image01 Jack’s main vehicle in the post-war Earth is the Bubbleship craft. It is a two seat combination of helicopter and light jet. The center joystick controls most flight controls, while a left-hand throttle takes the place of a helicopter’s thrust selector. A series of switches above Jack’s seat provide basic power and start-up commands to the Bubbleship’s systems. image05 Jack first provides voice authentication to the Bubbleship (the same code used to confirm his identity to the Drones), then he moves to activate the switches above his head. Continue reading

Flight instrument panels

There are a great many interfaces seen on the bridge of the Prometheus, and like most flight instrument panels in sci-fi, they are largely about storytelling and less about use.

Prometheus-100

The captain of the Prometheus is also a pilot, and has a captain’s chair with a heads-up display. This HUD has with real-time wireframe displays of the spaceship in plan view, presumably for glanceable damage feedback.

Prometheus-028

He also can stand afore at a waist-high panel that overlooks the ship’s view ports. This panel has a main screen in the center, grouped arrays of backlit keys to either side, a few blinking components, and an array of red and blue lit buttons above. We only see Captain Janek touch this panel once, and do not see the effects.

Prometheus-097

Navigator Chance’s instrument panel below consists of four 4:3 displays with inscrutable moving graphs and charts, one very wide display showing a topographic scan of terrain, one dim panel, two backlit reticles, and a handful of lit switches and buttons. Yellow lines surround most dials and group clusters of controls. When Chance “switches to manual”, he flips the lit switches from right to left (nicely accomplishable with a single wave of the hand) and the switches lights light up to confirm the change of state. This state would also be visible from a distance, useful for all crew within line of sight. Presumably, this is a dangerous state for the ship to be in, though, so some greater emphasis might be warranted: either a blinking warning, or a audio feedback, or possibly both.

Prometheus-094Prometheus-102

Captain Janek has a joystick control for manual landing control. It has a line of light at the top rear-facing part, but its purpose is not apparent. The degree of differentiation in the controls is great, and they seem to be clustered well.

Prometheus-104

A few contextless flight screens are shown. One for the scientist known only as Ford features 3D charts, views of spinning spaceships, and other inscrutable graphs, all of which are moving.

Prometheus-095

A contextless view shows the points of metal detected overlaid on a live view from the ship.

Prometheus-101

There is a weather screen as well that shows air density. Nearby there’s a push control, which Chance presses and keeps held down when he says, “Boss, we’ve got an incoming storm front. Silica and lots of static. This is not good.” Thought we never see the control, it’s curious how such a thing could work. Would it be an entire-ship intercom, or did Chance somehow specify Janek as a recipient with a single button?

Prometheus-078

Later we see Chance press a single button that illuminates red, after which the screens nearby change to read “COLLISION IMMINENT,” and an all-ship prerecorded announcement begins to repeat its evacuation countdown.

Prometheus-309

This is single button is perhaps the most egregious of the flight controls. As Janek says to Shaw late in the film, “This is not a warship.” If that’s the case, why would Chance have a single control that automatically knows to turn all screens red with the Big Label and provide a countdown? And why should the crew ever have to turn this switch on? Isn’t a collision one of the most serious things that could happen to the ship? Shouldn’t it be hard to, you know, turn off?