Brain Upload

Once Johnny has installed his motion detector on the door, the brain upload can begin.

3. Building it

Johnny starts by opening his briefcase and removing various components, which he connects together into the complete upload system. Some of the parts are disguised, and the whole sequence is similar to an assassin in a thriller film assembling a gun out of harmless looking pieces.


It looks strange today to see a computer system with so many external devices connected by cables. We’ve become accustomed to one piece computing devices with integrated functionality, and keyboards, mice, cameras, printers, and headphones that connect wirelessly.

Cables and other connections are not always considered as interfaces, but “all parts of a thing which enable its use” is the definition according to Chris. In the early to mid 1990s most computer user were well aware of the potential for confusion and frustration in such interfaces. A personal computer could have connections to monitor, keyboard, mouse, modem, CD drive, and joystick – and every single device would use a different type of cable. USB, while not perfect, is one of the greatest ever improvements in user interfaces.

Why not go wireless? Wireless devices remove the need for a physical connection, but this means that anyone, not just you, could potentially connect. So instead of worrying about whether we have the right kind of cable, we now worry about the right kind of Bluetooth pairing and WiFi encryption password scheme. Mobile wireless devices also need their own batteries, which have to be charged. So wireless may seem visually cleaner, but comes with its own set of problems.

As of early 2016 we have two new standards, Lightning and USB-C, that are orientation-independent (only fifty years after audio cables), high bandwidth, and able to transmit power to peripherals as well. Perhaps by 2021 cables will have made a comeback as the usual way to connect devices.

2. Explaining it

Johnny explains the process to the scientists. He needs them to begin the upload by pushing a button, helpfully labelled “start”, on the gadget that resembles an optical disk drive. There’s a big red button as well, which is not explained but would make an excellent “cancel” button.


It would be simpler if Johnny just did this himself. But we will shortly discover that the upload process is apparently very painful. If Johnny had his hands near the system, he might involuntarily push another button or disturb a cable. So for them, having a single, easily differentiated button to press minimizes their chance of messing it up.

1. Making codes

He also sticks a small black disk on the hotel room’s silver remote control. The small disk is evidently is a wireless controller or camera of some kind. The scientists must watch the upload progress counter, and as it approaches the end, use this modified remote to grab three frames from the TV display, which will become the “access code” for the data. (More on this below.)


None of the buttons on this remote have markings or labels, but neither Johnny nor the scientist who will be using it are bothered. Perhaps this hotel chain tries to please every possible guest by not favouring any particular language? But even in that case, I’d expect there to be some kind of symbols on the buttons and a multilingual manual to explain the meaning of each. Maybe Johnny spends so much time in hotel suites that he has memorised the button layout?

Short of a mind reading remote that can translate any button press into “what the user intended”, I have to admit this is a terrible interface.

(There is a label on the black disk, but I have no idea what it means or even which script that is. Anyone?)

0. Go go go

Johnny plugs in his implant, puts on a headset with more cables, and bites down on a mouthguard. He’s ready.


The scientist pushes the start button and the upload begins. Johnny sees the data stream in his headset as a flood of graphics and text.


Why does he need the headset when there is a direct cable connection to the implant? The movie doesn’t make it explicit. It could be related to the images used as the access code. (More on this below.) Perhaps the images need to be processed by the recipient’s own optic nerve system for more reliable storage?

Still, in the spirit of apologetics we should try to find a better explanation than “an opportunity for 1995 cutting edge computer generated graphics.” Perhaps it is a very flashy progress indicator? Older computer systems had blinking lights on disk drives to indicate activity, copied on some of today’s USB sticks. Current-day file upload or download GUIs have progress bars. As processing and graphics capabilities increase, it will be possible for software to display thumbnails or previews of the actual data being transferred without slowing down.

Unfortunately there is an argument against this, which is that the obvious upload progress indicator is a numeric display counting gigabytes down to zero, and it makes a fast chirping sound as a sonic indicator as well. The counter shows the data flowing at gigabytes per second, the entire upload lasting about a minute. There’s also the problem that it’s not Johnny who is interested in knowing whether the upload is scientific data rather than, say, a video collection; but the scientists, and they can’t see it.


As the counter drops below one hundred, the scientist points the remote with black disk at the TV display, currently showing a cartoon, and presses the middle button. The image from the TV appears overlaid on the data stream to Johnny. This is a little odd, because Johnny assured the scientists that he wouldn’t know what the access codes were himself. Maybe these brief flashes are not enough time for him to remember these particular images among the gigabytes of visual content. But the way they’re shown to us, I’ll bet you can remember them when they come up again later in the plot.


Two more images are grabbed before the counter stops. When the upload finishes, the three images are printed out. (In the original film this is shown upside down, so I have rotated the image.)



So what are the images for? The script isn’t clear. I suggest that the images are being used as the equivalents of very large random numbers for whatever cryptography scheme protects the data against unauthorised access. Some current day systems use the timing of key presses and mouse movements as a source of randomness because humans simply can’t move their fingers with microsecond precision. Here, the human element makes it impossible to predict exactly which frame is chosen.

Humans also find images much easier to recognise than hundred digit numbers. Anyone who has seen the printout will be able to say whether a particular image is part of the access code or not with a high degree of confidence. In computer systems today, Secure Shell, or ssh, is a widely used encrypted terminal program for secure access to servers. Recent versions of ssh have a ‘randomart’ capability which shows a small ASCII icon generated from the current cryptographic key to everyone who logs on. If this ASCII icon appears different, this alerts everyone that the server key has been changed.

There’s one potential usability problem with the whole “pick three random images” mechanism. The last frame was grabbed when the counter was very close to zero. What would have happened if he had been too slow and missed altogether? Wouldn’t it be more reliable to have the upload system automatically grab the images rather than rely on a human? Chris suggests that maybe it secretly did grab three images that could have used without human input, but privileged the human input since it was more reliably random.

Quick aside: You may be asking, if images would be so wonderful, why aren’t we using them in this way already? It’s because our current security systems need not just very large random numbers, but very large random numbers with particular mathematical properties such as being prime. But let’s cut Johnny Mnemonic some slack,  saying that by 2021 we may have new algorithms.

OK, back to the plot.

-1. Sharing the codes

The access codes are to be faxed from Beijing to Newark, although this gets interrupted by the Yakuza intruders. This is yet another device with unmarked buttons.


This device makes the same beeps and screeches as a 1990s analog fax machine. Since we’ll later learn that all the fax messages and phone calls are stored digitally in cyberspace, this must be a skeuomorphism, the old familiar audio tones now serving just as progress indicators.

As with other audio output, the tones allow the user to know that the transmission is proceeding and when it ends without having to pay full attention to the device. On the other hand, there is potential for confusion here as the digital upload is (presumably) much faster. Most current day computer systems could upload three photos, even in high resolution, well before the sequence of tones would complete. Users would most likely wait longer than actually necessary before moving on to their next task.

-2. Washing up

During the upload Johnny clenches his fists and bites his mouthguard. When the upload finishes, he retreats to the bathroom in considerable pain. At one point blood flows from his nose, and he swipes his hand over the tap to wash it down the drain. The bathroom announces that the water temperature is 17 degrees. We’ll come back to this later.


As Make It So emphasises in the chapter on brain interfaces, there is nothing in our current knowledge to suggest that writing or reading memories to or from a human brain would be painful. On the other hand, we know that information in the brain is the shape of the neurons in the brain. Who knows what side effects will happen as those neurons are disconnected and reconnected as they need to be? We don’t know, so can’t really say whether it would hurt or not.

-3. Escaping the Yakuza

As mentioned in a prior post, while he is in the bathroom, the motion detector Johnny installed on the hotel door isn’t very effective and the Yakuza break in, kill everyone else, and acquire the second of the three access code images. Johnny escapes with the first image and flies to Newark, North America.


Time circuits (which interface the Flux Capacitor)

BttF_137Time traveling in the DeLorean is accomplished in three steps. In the first, he traveler turns on the “time circuits” using a rocking switch in the central console. Its use is detailed in the original Back to the Future, as below.

In the second, the traveler sets the target month, day, year, hour, and minute using a telephone keypad mounted vertically on the dashboard to the left, and pressing a button below stoplight-colored LEDs on the left, and then with an extra white status indicator below that before some kind of commit button at the bottom.

In the third, you get the DeLorean up to 88 miles per hour and flood the flux capacitor with 1.21 gigawatts of power.

Seems simple.

It’s not… Continue reading


The stage managers’ main raison d’être is to course-correct if and when victims begin to deviate from the path required of the ritual.

This begins with the Prep team, long before the victims enter the stage. For example, Jules’ hair dye and Marty’s laced pot. These corrections become more necessary and intense once the victims go on stage.

Making sure there are sexy times

The ritual requires that a sexy young couple have sexy times on stage before they suffer and die. “The mood” can be ruined by many things, but control has mechanisms to cope with most of them. We see three in the movie.


The temperature can’t be too hot or too cold, but this isn’t something that can be set and forgot. What counts as the right temperature is a subjective call for the people involved and their circumstances, such as being drunk, or amount and type of clothes worn. Fortunately, the video-audio panopticon lets the stage managers know when a victim speaks about this directly, and do something about it. The moment Jules complains, for instance, Sitterson is able to reach over to a touch-screen display and tap the temperature a few degrees warmer.

Sitterson heats things up.

The gauge is an interesting study. It implies a range possible between 48 and 92 degrees Fahrenheit, each of which is uncomfortable enough to encourage different behaviors in the victims, without the temperature itself being life-threatening.

Moreover, we see that it’s a “blind” control. Before Sitterson taps it, he is only shown the current temperature as a blue rectangle that fills up four bars and that it is exactly 64 degrees. But if he knew he wanted it to be 76 degrees, what, other than experience or training, tells him where he should touch to get to that desired new temperature? Though the gauge provides immediate feedback, it still places a burden on his long-term memory. And for novice users, such unlabeled controls require a trial-and-error method that isn’t ideal. Even the slim area of white coloring at the top, which helpfully indicates temperatures warmer than cooler, appears too late to be useful.

Better would be to have the color alongside or under the gauge with smaller numbers indicated along its length such that Sitterson could identify and target the right temperature on the first try.


The next thing that can risk the mood is a lack of a victim’s amorous feelings. Should someone not be “feeling it,” Control can pipe sex pheromones to areas on stage. We see Hadley doing this by operating a throttle lever on the electronic-era control panel. After Hadley raises this lever, we see small plumes of mist erupt from the mossy forest floor that Jules and Curt are walking across.

Hadley introduces pheromones to the forest air.

This control, too, is questionable. Let’s first presume it’s not a direct control, like a light switch, but more of a set-point control, like a thermostat. Similar to the temperature gauge above, this control misses some vital information for Hadley to know where to set the lever to have the desired amount of pheromone in the air, like a parts-per-million labeling along the side. Perhaps this readout occurs on a 7-segment readout nearby or a digital reading on some other screen, but we don’t see it.

There is also no indication about how Hadley has specified the location for the pheromone release. It’s unlikely that he’s releasing this everywhere on stage, lest this become a different sort of ritual altogether. There must be some way for him to indicate where, but we don’t see it in use. Perhaps it is one of the lit square buttons to his right.

An interesting question is why the temperature gauge and pheromone controls, which are similar set-point systems, use not just different mechanisms, but mechanisms from different eras. Certainly such differentiation would help the stage managers’ avoid mistaking one for the other, and inadvertently turn a cold room into an orgy, so perhaps it is a deliberate attempt to avoid this kind of mistake.


The final variable that stands in the way of Jules’ receptiveness (the authors here must acknowledge their own discomfort in having to write about this mechanistic rape in our standard detached and observational tone) is the level of light. After she complains that it is too dark, Hadley turns a simple potentiometer and the “moonlight” on a soft bed of moss behind them grows brighter.

Control responds to Jules’ objection to the darkness.

This, too, is a different control than the others; though it controls what is essentially a floating-point variable. But since it is more of a direct control than the other two, its design as a hard-stop dial makes sense, and keeps it nicely differentiated from the others.

Marty’s Subliminal Messages

Over the course of the movie, several times we hear subliminal messages spoken to directly control Marty. We never see the inputs used by Control, but they do, at least on one occasion, actually influence him, and is one of the ways the victims are nudged into place.

Marty breaks the fourth wall

In addition to Dana & Curt’s almost not getting it on, another control-room panic moment comes when Marty accidentally breaks a lamp and finds one of the tiny spy cameras embedded throughout the cabin. Knowing that this level of awareness or suspicion could seriously jeopardize the scenario, Hadley bolts to a microphone where he says, “Chem department, I need 500 ccs of Thorazine pumped into room 3!”

Marty finds a spy camera

Hadley speaks a command to the Chem department

Careful observers will note while watching the scene that a menu appears on a screen behind him as he’s stating this. The menu lists the following four drugs.

  • Cortisol (a stress hormone)
  • Pheromones (a category of hormonal social signals, most likely sex pheromones)
  • Thorazine (interestingly, an antipsychotic known to cause drowsiness and agitation)
  • Rhohyptase (aka Rhohypnol, the date rape drug)

Given that content, the timing of the menu is curious. It appears, overlaid on the victim monitoring screen, the moment that Hadley says “500.” (Before he can even specify “Thorazine.”) How does it appear so quickly? Either there’s a team in the Chem department also monitoring the scene, and who had already been building a best-guess menu for what Hadley might want in the situation and they just happened to push it to Hadley’s screen at that moment; Or there’s an algorithmic voice- and goal-awareness system that can respond quickly to the phrase “500 ccs” and provide the top four most likely options. That last one is unlikely, since…

  • We don’t see evidence of it anywhere else in the movie
  • Hadley addresses the Chem department explicitly
  • We’d expect him to have his eyes on the display, ready to make a selection on its touch surface, if this was something that happened routinely

But, if we were designing the system today with integrated voice recognition capabilities, it’s what we’d do.

Curt suggests they stick together

After the attack begins on the cabin itself, Curt wisely tells the others, “Look, we’ve got to lock this place down…We’ll go room by room, barricade every window and every door. We’ve got to play it safe. No matter what happens, we have to stay together.” Turns out this is a little too wise for Hadley’s tastes. Sitterson presses two yellow, back-lit buttons on his control panel to open vents in the hallway, that emit a mist. As Curt passes by the vents and inhales, he pauses, turns to the others and says, “This isn’t right…This isn’t right, we should split up. We can cover more ground that way.”

Sitterson knocks some sense out of Curt.

This two-button control seems to indicate drug (single dose) and location, which is sensible. But if you are asking users to select from different variables, it’s a better idea to differentiate them by clustering and color, to avoid mistakes and enable faster targeting.

Locking the doors

Once the victims are in their rooms, Hadley acknowledges it’s time to, “Lock ‘em in.” Sitterson flips a safety cover and presses a back-lit rocker switch, which emits a short beep and bolts the doors to all the victims’ rooms at the same time.

Sitterson bolts the victims’ doors.

Marty in particular notices the loud “clunk” as the bolts slide into place. He tests the door and is confounded when he finds it is, in fact, locked tight. Control’s earlier concern about tipping their hand seems to matter less and less, since this is a pretty obvious manipulation.

The edge of the world

Bolted doors pale in comparison to the moment when Curt, Dana, and Holden violently encounter the limits of the stage. After the demolition team seals the tunnel to prevent escape that way, Curt tries to jump the ravine to the other side so he can fetch help. Unfortunately for him, the ravine is actually an electrified display screen, showing a trompe-l’œil illusion of the far side. By trying to jump the ravine, Curt unwittingly commits suicide by slamming into it.

Curt slams into the edges of the “world” of the cabin.

The effect of the screen is spectacular, full of arcs zipping along hexagonal lines and sparks flying everywhere. Dana and Holden rush to the edge of the cliff to watch him tumble down its vast, concave surface. It seems that if you’ve come this far, Control isn’t as concerned about tipping its hand as it is finishing the job.