Iron Man HUD: 2nd-person view

The HUD itself displays a number of core capabilities across the Iron Man movies prior to its appearance in The Avengers. Cataloguing these capabilities lets us understand (or backworld) how he interacts with the HUD, equipping us to look for its common patterns and possible conflicts. In the first-person view, we saw it looked almost entirely like a rich agentive display, but with little interaction. Now, let’s look at that gorgeous 2nd-person view.

When in the first film Tony first puts the faceplate on and says to JARVIS, “Engage heads-up display”… IronMan1_HUD00 …we see things from a narrative-conceit, 2nd-person perspective, as if the helmet were huge and we are inside the cavernous space with him, seeing only Tony’s face and the augmented reality interface elements. IronMan1_HUD07 You might be thinking, “Of course it’s a narrative conceit. It’s not real. It’s in a movie.” But what I mean by that is that even in the diegesis, the Marvel Cinematic World, this is not something that could be seen. Let’s move through the reasons why. Continue reading

Brain interfaces as wearables

There are lots of brain devices, and the book has a whole chapter dedicated to them. Most of these brain devices are passive, merely needing to be near the brain to have whatever effect they are meant to have (the chapter discusses in turn: reading from the brain, writing to the brain, telexperience, telepresence, manifesting thought, virtual sex, piloting a spaceship, and playing an addictive game. It’s a good chapter that never got that much love. Check it out.)

This is a composite SketchUp rendering of the shapes of all wearable brain control devices in the survey.

This is a composite rendering of the shapes of most of the wearable brain control devices in the survey. Who can name the “tophat”?

Since the vast majority of these devices are activated by, well, you know, invisible brain waves, the most that can be pulled from them are sartorial– and social-ness of their industrial design. But there are two with genuine state-change interactions of note for interaction designers.

Star Trek: The Next Generation

The eponymous Game of S05E06 is delivered through a wearable headset. It is a thin band that arcs over the head from ear to ear, with two extensions out in front of the face that project visuals into the wearer’s eyes.

STTNG The Game-02

The only physical interaction with the device is activation, which is accomplished by depressing a momentary button located at the top of one of the temples. It’s a nice placement since the temple affords placing a thumb beneath it to provide a brace against which a forefinger can push the button. And even if you didn’t want to brace with the thumb, the friction of the arc across the head provides enough resistance on its own to keep the thing in place against the pressure. Simple, but notable. Contrast this with the buttons on the wearable control panels that are sometimes quite awkward to press into skin.

Minority Report (2002)

The second is the Halo coercion device from Minority Report. This is barely worth mentioning, since the interaction is by the PreCrime cop, and it is only to extend it from a compact shape to one suitable for placing on a PreCriminal’s head. Push the button and pop! it opens. While it’s actually being worn there is no interacting with it…or much of anything, really.



Head: Y U No house interactions?

There is a solid physiological reason why the head isn’t a common place for interactions, and that’s that raising the hands above the heart requires a small bit of cardiac effort, and wouldn’t be suitable for frequent interactions simply because over time it would add up to work. Google Glass faced similar challenges, and my guess is that’s why it uses a blended interface of voice, head gestures, and a few manual gestures. Relying on purely manual interactions would violate the wearable principle of apposite I/O.

At least as far as sci-fi is telling us, the head is not often a fitting place for manual interactions.

The combadge

There’s one wearable technology that, for sheer amount of time on screen and number of uses, eclipses all others, so let’s start with that. Star Trek: The Next Generation introduced a technology called a combadge. This communication device is a badge designed with the Starfleet insignia, roughly 10cm wide and tall, that affixes to the left breast of Starfleet uniforms. It grants its wearer a voice communication channel to other personnel as well as the ship’s computer. (And as Memory Alpha details, the device can also do so much more.)

Chapter 10 of Make It So: Interaction Design Lessons from Science Fiction covers the combadge as a communication device. But in this writeup we’ll consider it as a wearable technology.


How do you use it?

To activate it, the crewman reaches up with his right hand and taps the badge once. A small noise confirms that the channel has been opened and the crewman is free to speak. A small but powerful speaker provides output that can be heard against reasonable background noise, and even to announce an incoming call. To close the channel, the crewman reaches back up to the combadge and double-taps its surface. Alternately, the other party can just “hang up.”

This one device illustrates of the primary issues germane to wearable technology. It’s perfectly wearable, social, easy to access, prevents accidental activation, and utilizes apposite inputs and outputs.



The combadge is light, thin, appropriately sized, and durable. It stays in place but is casually removable. There might be some question about its hard, pointy edges, but given its standard location on the left breast, this never presents a poking hazard.



Wearable tech exists in our social space, and so has to fit into our social selves. The combadge is styled appropriately to work on a military uniform. It is sleek, sober, and dynamic. It could work as is, even without the functional aspects. That it is distributed to personnel and part of the uniform means it doesn’t suffer the vagaries of fashion, but it helps that it looks pretty cool.

As noted in the book, since it is a wireless microphone, it really should have some noticeable visual signal for others to know when it’s on, so they know that there might be an eavesdropper or when they might be recorded. Other than breaking this rule of politeness, the combadge suits Starfleet’s social requirements quite well.

When Riker encounters "Rice" in The Arsenal Of Freedom (S1E21), "Rice" isn't aware that the combadge is recording. Sure, he was really a self-iterating hyper-intelligent weapon (decades before the Omnidroid) but it's still the polite thing to do.

When Riker encounters “Rice” in The Arsenal Of Freedom (S1E21), “Rice” isn’t aware that the combadge is recording. Sure, he was really a self-iterating hyper-intelligent weapon (decades before the Omnidroid) but it’s still the polite thing to do.

I don’t recall ever seeing scenes where multiple personnel try to use their combadges near each other at the same time and having trouble as a result. I don’t recall this from the show (and Memory-Alpha doesn’t mention it) but I presume the combadges are keyed to the voice of the user to help solve this sort of problem, so it can be used socially.


Easy to access and use

Being worn on the left breast of the uniform means that it’s in an ideal position to activate with a touch from the right hand (and only a little more difficult for lefties). The wearer almost doesn’t need to even move his shoulder. This low-resistance activation makes sense since it is likely to be accessed often, and often in urgent situations.


Tough to accidentally activate

In this location it’s also difficult to accidentally activate. It’s rare that other people’s hands are near there, and when they are, its close enough to the wearers face that they know it and can avoid it if they need to.

Apposite I/O

The surface of the body is a pretty crappy place to try and implement WIMP models of interface design. Using touch for activation/deactivation and voice for commands fit most common uses of the device. It’s easy to imagine scenarios where silence might be crucial. In these cases it would be awesome if the combadge could read the musculature of its wearer to register subvocalized commands and communication.

The fact that the combadge announces an incoming call with audio could prove problematic if the wearer is in a very noisy environment, is in the middle of a conversation, or in a situation where silence is critical. Rather than use an “ring” with an audio announcement, a better approach might build in intensity: a haptic vibration for the initial or first several “rings,” and adding the announcement only later. This gives the wearer an opportunity to notice it amidst noise, silence it if noise would be unwelcome, and still provide an audible signal that told others engaged with the wearer what’s happening and that he may need to excuse himself.


So, as far as wearable tech goes, not only is it the most familiar, but it’s pretty good, and pretty illustrative of the categories of analysis applicable to all wearable interfaces. Next we’ll take a look at other wearable communications technologies in the survey, using them to illustrate these concepts, and see what new things they add.