The HoverChair Social Network

WallE-SocialNetwork03

The other major benefit to the users of the chair (besides the ease of travel and lifestyle) is the total integration of the occupant’s virtual social life, personal life, fashion (or lack-thereof), and basic needs in one device. Passengers are seen talking with friends remotely, not-so-remotely, playing games, getting updated on news, and receiving basic status updates. The device also serves as a source of advertising (try blue! it’s the new red!).

A slight digression: What are the ads there for? Considering that the Axiom appears to be an all-inclusive permanent resort model, the ads could be an attempt to steer passengers to using resources that the ship knows it has a lot of. This would allow a reprieve for heavily used activities/supplies to be replenished for the next wave of guests, instead of an upsell maneuver to draw more money from them. We see no evidence of exchange of money or other economic activity while on-board the Axiom

OK, back to the social network.

Security?

It isn’t obvious what the form of authentication is for the chairs. We know that the chairs have information about who the passenger prefers to talk to, what they like to eat, where they like to be aboard the ship, and what their hobbies are. With that much information, if there was no constant authentication, an unscrupulous passenger could easily hop in another person’s chair, “impersonate” them on their social network, and play havoc with their network. That’s not right.

It’s possible that the chair only works for the person using it, or only accesses the current passenger’s information from a central computer in the Axiom, but it’s never shown. What we do know is that the chair activates when a person is sitting on it and paying attention to the display, and that it deactivates as soon as that display is cut or the passenger leaves the chair.

We aren’t shown what happens when the passenger’s attention is drawn away from the screen, since they are constantly focused on it while the chair is functioning properly.

If it doesn’t already exist, the hologram should have an easy to push button or gesture that can dismiss the picture. This would allow the passenger to quickly interact with the environment when needed, then switch back to the social network afterwards.

And, for added security in case it doesn’t already exist, biometrics would be easy for the Axiom. Tracking the chair user’s voice, near-field chip, fingerprint on the control arm, or retina scan would provide strong security for what is a very personal activity and device. This system should also have strong protection on the back end to prevent personal information from getting out through the Axiom itself.

Social networks hold a lot of very personal information, and the network should have protections against the wrong person manipulating that data. Strong authentication can prevent both identity theft and social humiliation.

Taking the occupant’s complete attention

While the total immersion of social network and advertising seems dystopian to us (and that’s without mentioning the creepy way the chair removes a passenger’s need for most physical activity), the chair looks genuinely pleasing to its users.

They enjoy it.

But like a drug, their enjoyment comes at the detriment of almost everything else in their lives. There seem to be plenty of outlets on the ship for active people to participate in their favorite activities: Tennis courts, golf tees, pools, and large expanses for running or biking are available but unused by the passengers of the Axiom.

Work with the human need

In an ideal world a citizen is happy, has a mixture of leisure activities, and produces something of benefit to the civilization. In the case of this social network, the design has ignored every aspect of a person’s life except moment-to-moment happiness.

This has parallels in goal driven design, where distinct goals (BNL wants to keep people occupied on the ship, keep them focused on the network, and collect as much information as possible about what everyone is doing) direct the design of an interface. When goal-driven means data driven, then the data being collected instantly becomes the determining factor of whether a design will succeed or fail. The right data goals means the right design. Wrong data goals mean the wrong design.

Instead of just occupying a person’s attention, this interface could have instead been used to draw people out and introduce them to new activities at intervals driven by user testing and data. The Axiom has the information and power, perhaps even the responsibility, to direct people to activities that they might find interesting. Even though the person wouldn’t be looking at the screen constantly, it would still be a continuous element of their day. The social network could have been their assistant instead of their jailer.

One of the characters even exclaims that she “didn’t even know they had a pool!”. Indicating that she would have loved to try it, but the closed nature of the chair’s social network kept her from learning about it and enjoying it. By directing people to ‘test’ new experiences aboard the Axiom and releasing them from its grip occasionally, the social network could have acted as an assistant instead of an attention sink.

WallE-SocialNetwork05

Moment-to-moment happiness might have declined, but overall happiness would have gone way up.

The best way for designers to affect the outcome of these situations is to help shape the business goals and metrics of a project. In a situation like this, after the project had launched a designer could step in and point out those moments were a passenger was pleasantly surprised, or clearly in need of something to do, and help build a business case around serving those needs.

The obvious moments of happiness (that this system solves for so well) could then be augmented by serendipitous moments of pleasure and reward-driven workouts.

We must build products for more than just fleeting pleasure

WallE-SocialNetwork09

As soon as the Axiom lands back on Earth, the entire passenger complement leaves the ship (and the social network) behind.

It was such a superficial pleasure that people abandoned it without hesitation when they realized that there was something more rewarding to do. That’s a parallel that we can draw to many current products. The product can keep attention for now, but something better will come along and then their users will abandon them.

WallE-SocialNetwork07

A company can produce a product or piece of software that fills a quick need and initially looks successful. But, that success falls apart as soon as people realize that they have larger and tougher problems that need solving.

Ideally, a team of designers at BNL would have watched after the initial launch and continued improving the social network. By helping people continue to grow and learn new skills, the social network could have kept the people aboard the Axiom it top condition both mentally and physically. By the time Wall-E came around, and life finally began to return to Earth, the passengers would have been ready to return and rebuild civilization on their own.

To the designers of a real Axiom Social Network: You have the chance to build a tool that can save the world.

We know you like blue! Now it looks great in Red!

The Hover Chair

WallE-HoverChair05

The Hover Chair is a ubiquitous, utilitarian, all-purpose assisting device. Each passenger aboard the Axiom has one. It is a mix of a beach-side deck chair, fashion accessory, and central connective device for the passenger’s social life. It hovers about knee height above the deck, providing a low surface to climb into, and a stable platform for travel, which the chair does a lot of.

A Universal Wheelchair

We see that these chairs are used by everyone by the time that Wall-E arrives on the Axiom. From BNL’s advertising though, this does not appear to be the original. One of the billboards on Earth advertising the Axiom-class ships shows an elderly family member using the chair, allowing them to interact with the rest of the family on the ship without issue. In other scenes, the chairs are used by a small number of people relaxing around other more active passengers.

At some point between the initial advertising campaign and the current day, use went from the elderly and physically challenged, to a device used 24/7 by all humans on-board the Axiom. This extends all the way down to the youngest children seen in the nursery, though they are given modified versions to more suited to their age and disposition. BNL shows here that their technology is excellent at providing comfort as an easy choice, but that it is extremely difficult to undo that choice and regain personal control.

But not a perfect interaction

We see failure from the passengers’ total reliance on the chairs when one of them (John) falls out of his chair trying to hand an empty drink cup to Wall-E. The chair shuts down, and John loses his entire connection to the ship. Because of his reliance on the chair, he’s not even able to pull himself back up and desperately reaches for the kiosk-bots for assistance.

WallE-HoverChair07

This reveals the main flaw of the chair: Buy-N-Large’s model of distinct and complete specialization in robot roles has left the chair unable to help its passenger after the passenger leaves the chair’s seat. The first responders—the kiosk bots—can’t assist either (though this is due to programming, not capability…we see them use stasis/tractor beams in another part of the ship). Who or what robot the kiosk-bots are waiting for is never revealed, but we assume that there is some kind of specialized medical assistance robot specifically designed to help passengers who have fallen out of their chairs.

If these chairs were initially designed for infirm passengers, this would make sense; but the unintended conscription of the chair technology by the rest of the passengers was unforeseen by its original designers. Since BNL focused on specialization and fixed purpose, the ship was unable to change its programming to assist the less disabled members of the population without invoking the rest of the chair’s emergency workflow.

John reaching for help from the Kiosk-bots makes it appear that he either has seen the kiosk-bot use its beams before (so he knows it has the capability to help, if not the desire), or he pays so little attention to the technology that he assumes that any piece of the ship should be able to assist with anything he needs.

Whether he’s tech literate or tech insensitive and just wants things to work like magic as they do on the rest of the ship. The system is failing him and his mental model of the Axiom.

Make it ergonomic in every situation

WallE-HoverChair08

Considering that the chairs already hover, and we know Buy-N-Large can integrate active tractor beams in robot design, it would have been better to have a chair variant that allowed the passenger to be in a standing position inside the chair while it moved throughout the ship. It would then look like a chariot or a full-body exo-skeleton.

This would allow people who may not be able to stand (either due to disability or medical condition) to still participate in active sports like tennis or holo-golf. It would also allow more maneuverability in the chair, allowing it to easily rotate to pick up a fallen passenger and reposition them in a more comfortable spot, even if they needed medical attention.

This would allow immobilization in the case of a serious accident, giving the medical-bot more time to arrive and preventing the passenger from injuring themselves attempting to rescue themselves.

The chair has been designed to be as appealing to a low-activity user as possible. But when technology exists, and is shown to be relatively ubiquitous across different robot types, it should be integrated at the front line where people will need it. Waiting for a medical bot when the situation doesn’t demand a medical response is overly tedious and painful for the user. By using technology already seen in wide use, the chair could be improved to assist people in living an active lifestyle even in the face of physical disabilities.

Otto’s Manual Control

WallE-Otto02

WallE-Otto06

When it refused to give up authority, the Captain wrested control of the Axiom from the artificial intelligence autopilot, Otto. Otto’s body is the helm wheel of the ship and fights back against the Captain. Otto wants to fulfil BNL’s orders to keep the ship in space. As they fight, the Captain dislodges a cover panel for Otto’s off-switch. When the captain sees the switch, he immediately realizes that he can regain control of the ship by deactivating Otto. After fighting his way to the switch and flipping it, Otto deactivates and reverts to a manual control interface for the ship.

The panel of buttons showing Otto’s current status next to the on/off switch deactivates half its lights when the Captain switches over to manual. The dimmed icons are indicating which systems are now offline. Effortlessly, the captain then returns the ship to its proper flight path with a quick turn of the controls.

One interesting note is the similarity between Otto’s stalk control keypad, and the keypad on the Eve Pod. Both have the circular button in the middle, with blue buttons in a semi-radial pattern around it. Given the Eve Pod’s interface, this should also be a series of start-up buttons or option commands. The main difference here is that they are all lit, where the Eve Pod’s buttons were dim until hit. Since every other interface on the Axiom glows when in use, it looks like all of Otto’s commands and autopilot options are active when the Captain deactivates him.

A hint of practicality…

The panel is in a place that is accessible and would be easily located by service crew or trained operators. Given that the Axiom is a spaceship, the systems on board are probably heavily regulated and redundant. However, the panel isn’t easily visible thanks to specific decisions by BNL. This system makes sense for a company that doesn’t think people need or want to deal with this kind of thing on their own.

Once the panel is open, the operator has a clear view of which systems are on, and which are off. The major downside to this keypad (like the Eve Pod) is that the coding of the information is obscure. These cryptic buttons would only be understandable for a highly trained operator/programmer/setup technician for the system. Given the current state of the Axiom, unless the crew were to check the autopilot manual, it is likely that no one on board the ship knows what those buttons mean anymore.

WallE-Otto03

Thankfully, the most important button is in clear English. We know English is important to BNL because it is the language of the ship and the language seen being taught to the new children on board. Anyone who had an issue with the autopilot system and could locate the button, would know which button press would turn Otto off (as we then see the Captain immediately do).

Considering that Buy-N-Large’s mission is to create robots to fill humans’ every need, saving them from every tedious or unenjoyable job (garbage collecting, long-distance transportation, complex integrated systems, sports), it was both interesting and reassuring to see that there are manual over-rides on their mission-critical equipment.

…But hidden

The opposite situation could get a little tricky though. If the ship was in manual mode, with the door closed, and no qualified or trained personnel on the bridge, it would be incredibly difficult for them to figure out how to physically turn the ship back to auto-pilot. A hidden emergency control is useless in an emergency.

Hopefully, considering the heavy use of voice recognition on the ship, there is a way for the ship to recognize an emergency situation and quickly take control. We know this is possible because we see the ship completely take over and run through a Code Green procedure to analyze whether Eve had actually returned a plant from Earth. In that instance, the ship only required a short, confused grunt from the Captain to initiate a very complex procedure.

Security isn’t an issue here because we already know that the Axiom screens visitors to the bridge (the Gatekeeper). By tracking who is entering the bridge using the Axiom’s current systems, the ship would know who is and isn’t allowed to activate certain commands. The Gatekeeper would either already have this information coded in, or be able to activate it when he allowed people into the bridge.

For very critical emergencies, a system that could recognize a spoken ‘off’ command from senior staff or trained technicians on the Axiom would be ideal.

Anti-interaction as Standard Operating Procedure

WallE-Otto05

The hidden door, and the obscure hard-wired off button continue the mission of Buy-N-Large: to encourage citizens to give up control for comfort, and make it difficult to undo that decision. Seeing as how the citizens are more than happy to give up that control at first, it looks like profitable assumption for Buy-N-Large, at least in the short term. In the long term we can take comfort that the human spirit–aided by an adorable little robot–will prevail.

So for BNL’s goals, this interface is fairly well designed. But for the real world, you would want some sort of graceful degradation that would enable qualified people to easily take control in an emergency. Even the most highly trained technicians appreciate clearly labeled controls and overrides so that they can deal directly with the problem at hand rather than fighting with the interface.

The Gatekeeper

WallE-Gatekeeper04

After the security ‘bot brings Eve across the ship (with Wall-e in tow), he arrives at the gatekeeper to the bridge. The Gatekeeper has the job of entering information about ‘bots, or activating and deactivating systems (labeled with “1″s and “0″s) into a pedestal keyboard with two small manipulator arms. It’s mounted on a large, suspended shaft, and once it sees the security ‘bot and confirms his clearance, it lets the ‘bot and the pallet through by clicking another, specific button on the keyboard.

The Gatekeeper is large. Larger than most of the other robots we see on the Axiom. It’s casing is a white shell around an inner hardware. This casing looks like it’s meant to protect or shield the internal components from light impacts or basic problems like dust. From the looks of the inner housing, the Gatekeeper should be able to move its ‘head’ up and down to point its eye in different directions, but while Wall-e and the security ‘bot are in the room, we only ever see it rotating around its suspension pole and using the glowing pinpoint in its red eye to track the objects its paying attention to.

When it lets the sled through, it sees Wall-e on the back of the sled, who waves to the Gatekeeper. In response, the Gatekeeper waves back with its jointed manipulator arm. After waving, the Gatekeeper looks at its arm. It looks surprised at the arm movement, as if it hadn’t considered the ability to use those actuators before. There is a pause that gives the distinct impression that the Gatekeeper is thinking hard about this new ability, then we see it waving the arm a couple more times to itself to confirm its new abilities.

WallE-Gatekeeper01

The Gatekeeper seems to exist solely to enter information into that pedestal. From what we can see, it doesn’t move and likely (considering the rest of the ship) has been there since the Axiom’s construction. We don’t see any other actions from the pedestal keys, but considering that one of them opens a door temporarily, it’s possible that the other buttons have some other, more permanent functions like deactivating the door security completely, or allowing a non-authorized ‘bot (or even a human) into the space.

An unutilized sentience

The robot is a sentient being, with a tedious and repetitive job, who doesn’t even know he can wave his arm until Wall-e introduces the Gatekeeper to the concept. This fits with the other technology on board the Axiom, with intelligence lacking any correlation to the robot’s function. Thankfully for the robot, he (she?) doesn’t realize their lack of a larger world until that moment.

So what’s the pedestal for?

It still leaves open the question of what the pedestal controls actually do. If they’re all connected to security doors throughout the ship, then the Gatekeeper would have to be tied into the ship’s systems somehow to see who was entering or leaving each secure area.

The pedestal itself acts as a two-stage authentication system. The Gatekeeper has a powerful sentience, and must decide if the people or robots in front of it are allowed to enter the room or rooms it guards. Then, after that decision, it must make a physical action to unlock the door to enter the secure area. This implies a high level of security, which feels appropriate given that the elevator accesses the bridge of the Axiom.

Since we’ve seen the robots have different vision modes, and improvements based on their function, it’s likely that the Gatekeeper can see more into the pedestal interface than the audience can, possibly including which doors each key links to. If not, then as a computer it would have perfect recall on what each button was for. This does not afford a human presence stepping in to take control in case the Gatekeeper has issues (like the robots seen soon after this in the ‘medbay’). But, considering Buy-N-Large’s desire to leave humans out of the loop at each possible point, this seems like a reasonable design direction for the company to take if they wanted to continue that trend.

It’s possible that the pedestal was intended for a human security guard that was replaced after the first generation of spacefarers retired. Another possibility is that Buy-N-Large wanted an obvious sign of security to comfort passengers.

What’s missing?

We learn after this scene that the security ‘bot is Otto’s ‘muscle’ and affords some protection. Given that the Security ‘bot and others might be needed at random times, it feels like he would want a way to gain access to the bridge in an emergency. Something like an integrated biometric scanner on the door that could be manually activated (eye scanner, palm scanner, RFID tags, etc.), or even a physical key device on the door that only someone like the Captain or trusted security officers would be given. Though that assumes there is more than one entrance to the bridge.

This is a great showcase system for tours and commercials of an all-access luxury hotel and lifeboat. It looks impressive, and the Gatekeeper would be an effective way to make sure only people who are really supposed to get into the bridge are allowed past the barriers. But, Buy-N-Large seems to have gone too far in their quest for intelligent robots and has created something that could be easily replaced by a simpler, hard-wired security system.

WallE-Gatekeeper05

The Dropship

WallEDropShip-08

The Axiom Return Vehicle’s (ARV’s) first job is to drop off Eve and activate her for her mission on Earth. The ARV acts as the transport from the Axiom, landing on the surface of Earth to drop off Eve pods, then returning after an allotted time to retrieve the pods and return them to the Axiom.

The ARV drops Eve at the landing site by Wall-E’s home, then pushes a series of buttons on her front chest. The buttons light up as they’re pushed, showing up blue just after the arm clicks them. At the end of the button sequence, Eve wakes up and immediately begins scanning the ground directly in front of her. She then continues scanning the environment, leaving the ARV to drop off more Eve Pods elsewhere.

If It Ain’t Broke…

There’s an oddity in ARV’s use of such a crude input device to activate Eve. On first appearance, it seems like it’s a system that is able to provide a backup interface for a human user, allowing Eve to be activated by a person on the ground in the event of an AI failure, or a human-led research mission. But this seems awkward in use because Eve’s front contains no indication of what the buttons each do, or what sequence is required.

A human user of the system would be required to memorize the proper sequence as a physical set of relationships. Without more visual cues, it would be incredibly easy for the person in that situation to push the wrong button to start with, then continue pushing wrong buttons without realizing it (unless they remembered what sound the first button was supposed to make, but then they have one /more/ piece of information to memorize. It just spirals out of control from there).

What was originally for people is now best used by robots.

WallEDropShip-03

So if it’s not for humans, what’s going on? Looking at it, the minimal interface has strong hints of originally being designed for legacy support: large physical buttons, coded interface, and tilted upward for a person standing above it. BNL shows a strong desire to design out people, but leave interactions (see The Gatekeeper). This style of button interface looks like a legacy control kept by BNL because by the time people weren’t needed in the system anymore, the automated technology had already been adapted for the same situation.

Large hints to this come from the labels. Each label is an abstract symbol, with the keys grouped into two major areas (the radial selector on the top, and the line of large squares on the bottom). For highly trained technicians meant to interact only rarely with an Eve pod, these cryptic labels would either be memorized or referenced in a maintenance manual. For BNL, the problem would only appear after both the technicians and the manual are gone.

It’s an interface that sticks around because it’s more expensive to completely redo a piece of technology than simply iterate it.

Despite the information hurdles, the physical parts of this interface look usable. By angling the panel they make it easier to see the keypad from a standing position, and the keys are large enough to easily press without accidentally landing on the wrong one. The feedback is also excellent, with a physical depression, a tactile click, and a backlight that trails slightly to show the last key hit for confirmation.

If I were redesigning this I would bring in the ability for a basic- or intermediate-skill technician to use this keypad quickly. An immediate win would be labeling the keys on the panel with their functions, or at least their position in the correct activation sequence. Small hints would make a big difference for a technician’s memory.

WallEDropShip-04

To improve it even more, I would bring in the holographic technology BNL has shown elsewhere. With an overlay hologram, the pod itself could display real-time assistance, of the right sequence of keypresses for whatever function the technician needed.

This small keypad continues to build on the movie’s themes of systems that evolve: Wall-E is still controllable and serviceable by a human, but Eve from the very start has probably never even seen a human being. BNL has automated science to make it easier on their customers.

The SandPhone

LogansRun037

Not everyone is comfortable giving over to the flimsy promise of Carrousel [sic]. Some citizens run, and Sandmen find and terminate these cultural heretics.

Sandmen carry a device with them that has many different uses. It goes unnamed in the movie, so let’s just call it the SandPhone. It is a thick black rectangle about 20cm at its long edge, about the size of a very large cell phone. Near the earpiece on one broad side is a small screen for displaying text and images. Below that is a white line. The lower half of this face is metallic grill that covers a microphone. On the left edge is a momentary button that allows talking. Just above this is a small red button. When not in use, the device is holstered on the sandman’s belt.

The SandPhone lets the Sandman receive information through a display that can show both image and text. The Sandman sends back information and requests by voice in a CB radio metaphor.

Notifications

The first time we see the device is when Logan and Francis are attending Carrousel. Somehow, on his belt it catches his attention. With the crowd too loud for sound, and no evidence it’s light, my bet’s on haptics. Realizing he’s got a message, he picks it up, presses the edge button and the screen displays two lines of text:

RUNNER: GREAT HALL
ENTRANCE WEST.

He then puts the device to his face as we would a cell phone and shouts, "Affirmative!" as loud as he can.

LogansRun038

Perp wayfinding

Running with the device outside the Great Hall, Logan uses the SandPhone as a detector. By holding it flat out in front of him he hears a rhythmic pulse. Turning it this way and that, he listens for the change in pitch. It rises when he is pointing towards the targeted runner.

Bio identification

LogansRun046

LogansRun050

When he and Francis have terminated the runner, he snaps the device off his belt, and pressing the edge button, he reports back to dispatch, "Runner terminated, 0.31. Ready for cleanup." Then by placing the device near the head of the dead runner, the device displays on the screen the last photographic image of him on file. Since the face on the SandPhone screen does not match the face he sees before him, Logan lifts the device to his face and, holding the edge button, requests an identity check of dispatch. Instantly he pulls the device away from his face to show the text:

INDENT. AFFIRM
NEW YOU #483
FACE CHANGE.

LogansRun182

Send backup

Much later in the film we see Logan alert dispatch to the location of the underground hideout by reaching down to the holstered device and pressing the white line button on its face. Its screen pulses green, and his position is highlight on the runner board (see below) at dispatch. Minutes later the location is raided by Sandmen.

Analysis

The first thing to note is that this is pretty close to a modern smart phone. He receives images and text messages, can talk to dispatch, and it has a biometric capability for identifying citizens. It’s tempting to paint this as visionary, but keep in mind that the first mobile phone was demonstrated in 1973, three years earlier, so it’s likely that the film makers were riffing off of the demo technology they’d heard about or maybe even seen in person.

We evaluate an interface’s design by how well it helps its user achieves his goals. (Even if those goals are anethma. That’s how we judge an interface.) In this case, the SandPhone helps Logan get the information he needs, when he needs it, across multiple channels. It doesn’t distract him with other functions. It’s context aware and doesn’t apparently have battery issues.

There are improvements of course.

We should make sure his hands are free by making the information available as an augmented reality display instead of a handheld device. This would also give him the information privately rather than display it for anyone (notably members of the resistance) to see it. Wayfinding would be more sensible as an overlay to his vision through this device.

Some surface tweaks might also be made, such as giving him a means of text input so he wouldn’t have to shout above the roar of Carrousel. Some silent means of input would help for when he needs to provide silent input as well. First I thought optical inputs might be ideal, given the augmented reality, but we don’t want his eyes distracted like that, even for the duration of glances. Instead some other gestural input—perhaps a face twitch or subvocal input—that lets him keep the rest of his body tense and ready for action.

Citizen biometrics should be a background fact, given the penopticon of Dome City. The information would come to him when he gets his assignement. But turn those same biometrics around on Logan, and his body could request reinforcements before he even thought to do so manually. When his heart rate elevates and galvanic skin response lowers, dispatch would know something was up, and route backup immediately.

A strategic interaction designer would even ask why he has to chase runners at all, when predictive algorithms could guess which citizens were likely to run and take action to forestall their rebellion. But then we’re into Minority Report, and this needs to stay Logan’s Run.

Carrousel [sic]

LogansRun019

The hedonistic and carefree lifestyle in Dome City comes with a price. When a citizen’s lifeclock begins to blink, it means he or she is now too old, and due to attend a public ritual called Carrousel and die in a public spectacle. As this is a major event in the lives of citizens, most of the public attends these events.

Description

Lastdays are outfitted in special clothes and masks. After filing wearing these costumes and encircling a huge lifeclock, lastdays expose their palms to show the blinking lifeclock to confirm their status.

LogansRun024

Then they look up to a crystal at the ceiling that begins to spin. The lastdays become weightless, and they struggle to reach the top, for the opportunity to reach renewal.

When they fail—and they always fail—they explode in a fiery shower of sparks. The audience greets each explosion with a roar of excitement and applause.

Analaysis

A public ritual is at the edge of the definition of interface that I provided in Make It So:

All parts of a thing that enable its use.

But in this case, the culture of Dome City pays for its lavish lifestyle admidst fixed resources with these public executions, and something must turn what by rights should be met with horror and revulsion into something palatable, even enjoyable. It is in this sense that citizens use Carrousel.

Nearly everything we see in the ritual helps to hide its raw, morbid truth. The false promise of renewal hides the finality of the act. The masks won by participants hide the individual identity from the audience, easing the sense of personal loss. The identical costumes dehumanize participants, underscoring their role in the culture. The ritual actions give participants something to do during a time that is psychologically stressful. The public-ness of it reinforces its cultural importance and imprints onto the audience that one day, they do will participate.

LogansRun033

Dome City Rail

LogansRunCar-08

Citizens move between the distant parts of the city by means of a free, public transportation system. It is an ultra-light rail, featuring cars for two passengers, that move between long translucent tubes that connect the domes of the city. When one car stops at a station, its door slides open to allow exit and entry. We never see a car waiting behind another. Once seated, riders press a red button on a panel between the two seats (just visible in the screen capture below), and the car seals shut and takes off to the next station.

LogansRunCar-04

LogansRun144

A small panel inside the car alerts passengers to the name of the next stop as well as any additional information that is of use. When Logan and Jessica head to Cathedral Station, the panel blinks a red light to draw their attention. (The paired green light is never seen illuminated. What’s it there for?) A female voice says "Entering a reservation for violent delinquents. Authorized persons only." The screen before them reads, “personal risk area." (For those wondering why it stops there at all, anyone can get out of their car here, but Logan has to use his personal communication device with Control to have the gate to Cathedral opened.

The panel and voice output are useful to alert riders whose attention has drifted. Text could be put in the environment of course, since this information rarely changes, but it’s a bit harder to read when it’s moving and isn’t as likely to gain a distracted rider’s attention.

The last bit of interface is the LED displays on the walls of fancier stops like Arcade (the dome with the shopping mall and Caroussel.) We never see this sign change, but it makes sense that while riders are at the station, it displays the stop as a reinforcing bit of information, and can display alternate messages for citizens waiting on a car otherwise.

LogansRunCar-03

The interface is incredibly simple because the system is so constrained. You have to hop on at a station, and like an airport tram or a shabbat elevator, the car runs along a fixed loop. You hop out when you’re there. The main negative issues I see are selecting a stop and perhaps safety.

Selecting a stop

It’s a waste of time and energy to have cars stopping and starting at unwanted stations. It can also be distracting to have the car tell you about all the intermediate stops when you’re not interested in them.

To solve this problem, the track system should be built with track bypasses so we have to worry less about track congestion at stops. Then riders could either ride the “local” from stop to stop, or optionally have some way to indicate their desired stop, bypassing the ones in between. What’s this indication look like? In the panopticon of Dome City, the Übercomputer can just listen to your conversations wherever you’re having them, and when you get to a car default to the stop expressed in conversation. Logan and Jessica had just spoken about Cathedral Station, so when they stepped in, it could have just asked them to confirm. If the selection was wrong, or no stop had been mentioned recently, riders should be able to speak their destination or the event to which they’re headed. As a last fallback, a screen displaying discrete options could allow them to select a destination by touch or gesture.

LogansRunCar-07

Rider safety

The safety issue is subtle, but if riders have no control over the cars, why are the seats facing forward? It’s much safer in a head-on collision to be seated "backward," like an infant’s car seat. Psychologically, people are most comfortable sitting forward to see in the direction of potential collisions, but if you lived in an UberNanny State like Dome City, the system would just force people to sit in the safest way.

It’s going to be more complicated than this

Getting public transportation experience design right is tough enough. But it’s going to get more complicated. Here at the dawn of computer-driven cars and computer-requested and computer-wayfinding "routeless" busses, the challenges will be manifold. How do you signal a stop? How does it gracefully degrade? How do you pay? How do you get to a just-in-time defined stop? How do you indicate your destination(s), willingness to share the ride, and urgency? How do you not disenfranchise people just because they have no cell phone? Dome City is small and constrained enough to ignore such problems, like a light rail in a small, wealthy, downtown core, making it almost too simple to be instructive.

LogansRunCar-06

The Revival Chamber

DtESS-058

When Gort brings Klaatu’s body back to the ship for revival, he saunters ominously past the terrified Helen and lays the body on a table. He lowers the lights gesturally, and then flips a switch on the wall to the right of the chamber. As a result, the surface of the table illuminates beneath Klaatu, a buzz begins and increases in volume and insistency, and a light illuminates in a tube near Klaatu’s head. Some unknown time later, Klaatu wakes up, brought back to life with time enough to deliver a terrible warning to the people of Earth.

As an interface, it seems as simple as it gets, but it could be done better. Attach some sensors to detect weight load on the table, and some biometric sensors to detect if the body is dead or alive. If the body is dead and sits in the right position, start the revival procedure. This automatic procedure would be useful for Klaatu if he was dying and Gort was not around. He could just climb on to the table and the moment he passed, systems would kick into gear that would revive him.

Remember, Klaatunians, even when you think you’ve finished your designs, pause and think, “This is awesome, yet, how could I improve it even more?”

DtESS-061

Klaatunian interior

DtESS-034

When the camera first follows Klaatu into the interior of his spaceship, we witness the first gestural interface seen in the survey. To turn on the lights, Klaatu places his hands in the air before a double column of small lights imbedded in the wall to the right of the door. He holds his hand up for a moment, and then smoothly brings it down before these lights. In response the lights on the wall extinguish and an overhead light illuminates. He repeats this gesture on a similar double column of lights to the left of the door.

The nice thing to note about this gesture is that it is simple and easy to execute. The mapping also has a nice physical referent: When the hand goes down like the sun, the lights dim. When the hand goes up like the sun, the lights illuminate.

He then approaches an instrument panel with an array of translucent controls; like a small keyboard with extended, plastic keys. As before, he holds his hand a moment at the top of the controls before swiping his hand in the air toward the bottom of the controls. In response, the panels illuminate. He repeats this on a similar panel nearby.

Having activated all of these elements, he begins to speak in his alien tongue to a circular, strangely lit panel on the wall. (The film gives no indication as to the purpose of his speech, so no conclusions about its interface can be drawn.)

DtESS-049

Gort also operates the translucent panels with a wave of his hand. To her credit, perhaps, Helen does not try to control the panels, but we can presume that, like the spaceship, some security mechanism prevents unauthorized control.

Missing affordances

Who knows how Klaatu perceives this panel. He’s an alien, after all. But for us mere humans, the interface is confounding. There are no labels to help us understand what controls what. The physical affordances of different parts of the panels imply sliding along the surface, touch, or turning, not gesture. Gestural affordances are tricky at best, but these translucent shapes actually signal something different altogether.

Overcomplicated workflow

And you have to wonder why he has to go through this rigmarole at all. Why must he turn on each section of the interface, one by one? Can’t they make just one “on” button? And isn’t he just doing one thing: Transmitting? He doesn’t even seem to select a recipient, so it’s tied to HQ. Seriously, can’t he just turn it on?

Why is this UI even here?

Or better yet, can’t the microphone just detect when he’s nearby, illuminate to let him know it’s ready, and subtly confirm when it’s “hearing” him? That would be the agentive solution.

Maybe it needs some lockdown: Power

OK. Fine. If this transmission consumes a significant amount of power, then an even more deliberate activation is warranted, perhaps the turning of a key. And once on, you would expect to see some indication of the rate of power depletion and remaining power reserves, which we don’t see, so this is pretty doubtful.

Maybe it needs some lockdown: Security

This is the one concern that might warrant all the craziness. That the interface has no affordance means that Joe Human Schmo can’t just walk in and turn it on. (In fact the misleading bits help with a plausible diversion.) The “workflow” then is actually a gestural combination that unlocks the interface and starts it recording. Even if Helen accidentally discovered the gestural aspect, there’s little to no way she could figure out those particular gestures and start intergalactic calls for help. And remembering that Klaatu is, essentially, a space ethics reconn cop, this level of security might make sense.